
Savitribai Phule Pune University, Pune

Maharashtra, India

Faculty of Science and Technology

National Education Policy (NEP)-2020 Compliant Curriculum

SE - Second Year Engineering (2024 Pattern)

Electronics & Telecommunication Engineering

(With effect from Academic Year 2025-26)

DRAFT COPY

14th June 2025

www.unipune.ac.in

Contents

Nomenclature	3
Preface	4
Program Educational Objectives	5
KnowledgeandAttitudeProfile(WK)	6
Program Outcomes	7
General Rules	9
Curriculum Structure - Semester III	12
Curriculum Structure - Semester IV	13
Semester III Courses	14
Electronics Circuits	15
Engineering Mathematics III	18
Digital Electronics	19
Electronics Circuits Lab	23
Digital Electronics Lab	24
OE1 A-Supply Chain Management	26
OE1 B-Digital Marketing	28
Multidisciplinary Minor 1 - Data Structures and Algorithms	29
EEM - Engineering Economics & Applications	35
VEC-Universal Human Values	38
Community Engagement Project	46

Nomenclature

- CEP Community Engagement Project
- MDM Multidisciplinary Minor
- OE Open Elective
- PCC Program Core Course
- PEO Programme Educational Objectives
- VEC Value Education Course
- WK Knowledge and Attitude Profile

Dear Students and Teachers,

We, the members of Board of Studies Electronics and Telecommunication Engineering, are very happy to present Second Year Electronics and Telecommunication Engineering syllabus effective from the Academic Year 2025-26. The present curriculum will be implemented for Second Year of Engineering from the academic year 2025-26. Subsequently this will be carried forward for TE and BE in AY 2026-27, 2027-28, respectively.

Electronics and Telecommunication Engineering is a dynamic discipline that lies at the intersection of electronics engineering and communication technology. It provides the foundation for the design, development, and application of electronic systems and communication devices. This curriculum is designed to provide students with a comprehensive understanding of the fundamental principles, theories, and practices of Electronics and Telecommunication engineering, while also preparing them for the ever-evolving technological landscape.

The revised syllabus falls in line with the objectives of NEP-2020, Savitribai Phule Pune University, AICTE New Delhi, UGC, and various accreditation agencies by keeping an eye on the technological developments, innovations, and industry requirements. Wherever possible, additional resource links of platforms such as NPTEL, Swayam are appropriately provided at the end of each course. Learners are now getting sufficient time for self learning either through online courses or additional projects for enhancing their knowledge and skill sets. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

This curriculum is the result of extensive consultation with academic experts, industry professionals, and alumni to ensure relevance and excellence. It is designed not only to meet the current industry standards but also to prepare students for higher studies and research in the field of Electronics and Telecommunication engineering.

We hope that this curriculum will inspire students to become competent professionals, responsible citizens, and contributors to the technological advancement of society.

Dr. S. D. Shirbahadurkar Chairman Board of Studies

Programme Educational Objectives (PEO)

Program Educational Objectives (PEOs): Program Educational Objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

PEO	PEO Focus	PEO Statements
PEO1	Core competence	Attainment of key principles and practices of
		computation, mathematics and basic principles of
		engineering to ensure that graduates are able to apply
		their software development skills in design and
		implementation of practical systems consisting of
		software and/or hardware components.
PEO2	Problem solving skills and	Analyze real-life problems and impart science-based
	Ethics	engineering education to develop professional skills
		that will prepare the students for immediate
		employment in the industry.
PEO3	Professionalism and	Imbibe lifelong learning, professional and ethical
	Lifelong Learning	attitude for embracing global challenges and make
		positive impact on environment and society.

Knowledge and Attitude Profile (WK)

A Knowledge and Attitude Profile (KAP), often represented as WK (Knowledge and Attitude Profile) in some contexts, is a framework or assessment tool used to evaluate an individual's knowledge and attitudes related to a specific area, topic, or domain.

WK1	A systematic, theory-based understanding of the natural sciences
	applicable to the discipline and awareness of relevant social sciences.
WK2	Conceptually-based mathematics, numerical analysis, data analysis,
	statistics and formal aspects of computer and information science to
	support detailed analysis and modelling applicable to the discipline.
WK3	A systematic, theory-based formulation of engineering fundamentals
	required in the engineering discipline.
WK4	Engineering specialist knowledge that provides theoretical
	frameworks and bodies of knowledge for the accepted practice areas
	in the engineering discipline; much is at the forefront of the
	discipline.
WK5	Knowledge, including efficient resource use, environmental impacts,
	whole-life cost, re-use of resources, net zero carbon, and similar
	concepts, that supports engineering design and operations in a
	practice area.
WK6	Knowledge of engineering practice (technology) in the practice areas
	in the engineering discipline.
WK7	Knowledge of the role of engineering in society and identified issues
	in engineering practice in the discipline, such as the professional
	responsibility of an engineer to public safety and sustainable
	development.
WK8	Engagement with selected knowledge in the current research
	literature of the discipline, awareness of the power of critical
	thinking and creative approaches to evaluate emerging issues.
WK9	Ethics, inclusive behavior and conduct. Knowledge of professional
	ethics, responsibilities, and norms of engineering practice.
	Awareness of the need for diversity by reason of ethnicity, gender,
	age, physical ability etc. with mutual understanding and respect, and
	of inclusive attitudes.

Programme Outcomes (PO)

Program Outcomes are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, attitude and behaviour that students acquire through the program. On successful completion of B.E. in Electronics and Telecommunication Engineering, graduating students/graduates will be able to:

computing, ialization as o the solution analyze ited elopment. problems and o meet iealth and iety and
o the solution analyze ated elopment. problems and o meet aealth and
analyze ited elopment. problems and o meet iealth and
problems and meet mealth and
problems and meet mealth and
elopment. problems and o meet realth and
problems and o meet realth and
o meet lealth and
o meet lealth and
ealth and
iety and
blems using
eriments,
ride valid
sources and
n and
nplex
spects while
ct on
afety, legal
l ethics,
ational &
ber or leader

P09	Communication	Communicate effectively and inclusively within the engineering
		community and society at large, such as being able to
		comprehend and write effective reports and design
		documentation, make effective presentations considering
		cultural, language, and learning differences
P010	Project Management	Apply knowledge and understanding of engineering
	and Finance	management principles and economic decision-making and
		apply these to one's own work, as a member and leader in a
		team, and to manage projects and in multidisciplinary
		environments.
P011	Life-Long Learning	Recognize the need for, and have the preparation and ability for
		i) independent and life-long learning ii) adaptability to new and
		emerging technologies and iii) critical thinking in the broadest
		context of technological change. (WK8)

General Rules and Guidelines

- Course Outcomes (CO): Course Outcomes are narrower statements that describe what students are expected to know, and are able to do at the end of each course. These relate to the skills, knowledge and behaviour that students acquire in their progress through the course.
- Assessment: Assessment is one or more processes, carried out by the institution, that identify, collect, and prepare data to evaluate the achievement of Program Educational Objectives and Program Outcomes.
- Evaluation: Evaluation is one or more processes, done by the Evaluation Team, for interpreting the data and evidence accumulated through assessment practices. Evaluation determines the extent to which Program Educational Objectives or Program Outcomes are being achieved, and results in decisions and actions to improve the program

Guidelines for Examination Scheme

Theory Examination: The theory examination shall be conducted in two different parts Comprehensive Continuous Evaluation (CCE) and End-Semester Examination (ESE).

Comprehensive Continuous Evaluation (CCE) of 30 marks based on all the Units of course syllabus to be scheduled and conducted at institute level. To design a Comprehensive Continuous Evaluation (CCE) scheme for a theory subject of 30 marks with the specified parameters, the allocation of marks and the structure can be detailed as follows:

Sr.	Sr. Parameters		Coverage of Units
1	Unit Test	12 Marks	Units 1 & Unit 2 (6 Marks/Unit)
2	Assignments / Case Study	12 Marks	Units 3 & Unit 4 (6 Marks/Unit)
3	Seminar Presentation / Open Book Test/ Quiz	06 Marks	Unit 5

Format and Implementation of Comprehensive Continuous Evaluation (CCE)

• Unit Test

- **Format :** Questions designed as per Bloom's Taxonomy guidelines to assess various cognitive levels (Remember, Understand, Apply, Analyze, Evaluate, Create).
- **Implementation**: Schedule the test after completing Units 1 and 2. Ensure the question paper is balanced and covers key concepts and applications.

• Sample Question Distribution

- Remembering (2 Marks): Define key terms related to [Topic from Units 1 and 2].
- Understanding (2 Marks): Explain the principle of [Concept] in [Context].
- Applying (2 Marks): Demonstrate how [Concept] can be used in [Scenario].
- Analyzing (3 Marks): Compare & contrast [Two related concepts] from Units 1 and 2.
- Evaluating (3 Marks): Evaluate the effectiveness of [Theory/Model] in [Situation].

- Assignments / Case Study : Students should submit one assignment or one Case Study Report based on Unit 3 and one assignment or one Case Study Report based on Unit 4.
 - **Format:** Problem-solving tasks, theoretical questions, practical exercises, or case studies that require in-depth analysis and application of concepts.
 - **Implementation:** Distribute the assignments or case study after covering Units 3 and 4. Provide clear guidelines and a rubric for evaluation.

• Seminar Presentation:

- Format: Oral presentation on a topic from Unit 5, followed by a Q&A session.
- **Deliverables:** Presentation slides, a summary report in 2 to 3 pages, and performance during the presentation.
- **Implementation:** Schedule the seminar presentations towards the end of the course. Provide students with ample time to prepare and offer guidance on presentation skills.
- Open Book Test:
 - Format: Analytical and application-based questions to assess depth of understanding.
 - **Implementation:** Schedule the open book test towards the end of the course, ensuring it covers critical aspects of Unit 5.
- Quiz :
 - **Format:** Quizzes can help your students practice existing knowledge while stimulating interest in learning about new topic in that course. You can set your quizzes to be completed individually or in small groups.
 - **Implementation:** Online tools and software can be used create quiz. Each quiz is made up of a variety of question types including multiple choice, missing words, true or false etc
- Example Timeline for conducting CCE:
 - Weeks 1-4 : Cover Units 1 and 2
 - Week 5 : Conduct Unit Test (12 marks)
 - Weeks 6-8 : Cover Units 3 and 4
 - Week 9 : Distribute and collect Assignments / Case Study (12 marks)
 - Weeks 10-12 : Cover Unit 5
 - Week 13 : Conduct Seminar Presentations or Open Book Test or Quiz (6 marks)
- Evaluation and Feedback:
 - **Unit Test:** Evaluate promptly and provide constructive feedback on strengths and areas for improvement.
 - Assignments / Case Study: Assess the quality of submissions based on the provided rubric. Offer feedback to help students understand their performance.

- **Seminar Presentation:** Evaluate based on content, delivery, and engagement during the Q&A session. Provide feedback on presentation skills and comprehension of the topic.
- **Open Book Test**: Evaluate based on the depth of analysis and application of concepts. Provide feedback on critical thinking and problem-solving skills.

z End-Semester Examination (ESE)

End-Semester Examination (ESE) of 70 marks written theory examination based on all the unit of course syllabus scheduled by university. Question papers will be sent by the University through QPD (Question Paper Delivery). University will schedule and conduct ESE at the end of the semester.

• Format and Implementation :

- **Question Paper Design** : Below structure is to be followed to design an End-Semester Examination (ESE) for a theory subject of 70 marks on all 5 units of the syllabus with questions set as per Bloom's Taxonomy guidelines and 14 marks allocated per unit.
- **Balanced Coverage**: Ensure balanced coverage of all units with questions that assess different cognitive levels of Bloom's Taxonomy: Remember, Understand, Apply, Analyze, Evaluate, and Create. The questions should be structured to cover:
 - * Remembering: Basic recall of facts and concepts.
 - * Understanding: Explanation of ideas or concepts.
 - * Applying: Use of information in new situations.
 - * Analyzing: Drawing connections among ideas.
 - * Evaluating: Justifying a decision or course of action.
 - * Creating: Producing new or original work (if applicable).
- Detailed Scheme: Unit-Wise Allocation (14 Marks per Unit): Each unit will have a combination of questions designed to assess different cognitive levels. By following this scheme, you can ensure a comprehensive and fair assessment of students' understanding and application of the course material, adhering to Bloom's Taxonomy guidelines for cognitive skills evaluation.

NEP 2020 Compliant Curriculum Structure

Second Year Engineering (2024 Pattern) Electronics and Telecommunication Engineering

Semester I

				Lev	el 5.0									
Course Code	Course Type	Teaching Scheme (Hrs/week)		Examination Scheme and Marks				Credits						
		Course Name	Theory	Tutorial	Practical	CCE*	End Sem	Term Work	Practical	Oral	Theory	Tutorial	Practical	Total
	Semester I													
PCC-201-ETC	Program Core Course	Electronics Circuits	3	-	-	30	70	-	-	-	3	-	-	3
PCC-202-ETC	Program Core Course	Engg Mathematics-III	3	-	-	30	70	-	-	-	3	-	-	3
PCC-203-ETC	Program Core Course	Digital Electronics	3	-	-	30	70	-	-	-	3	-	-	3
PCC-204-ETC	Program Core Course-Lab	Electronics Circuits Lab	-	-	2	-	-	25	50	-	-	-	1	1
PCC-205-ETC	Program Core Course-Lab	Digital Electronics Lab	-	-	2	-	-	25	50	-	-	-	1	1
OEL-220-ETC	Open Elective	Open Elective - I	3	-	-	30	70	-	-	-	3	-	-	3
MDM-230-ETC	Multi- disciplinary Minor	Data Structures & Algorithms	-	1	2	-	-	50	50	-	-	1	1	2
EEM-240-ETC	Entre- preneurship / Economics / Management	Engineering Economics & Applications	-	1	2	-	-	25	-	-	-	1	1	2
VEC-250-ETC	Value Education	Universal Human Values & Professional Ethics	-	1	2	-	-	25	-	-	-	1	1	2
CEP-260-ETC	Community Engagement Project	Community Engagement Project	-	-	4	-	-	25	-	-	-	-	2	2
	Total		12	03	14	120	280	175	125	-	12	03	07	22

Open Elective - I						
OEL-220 A- ETC Supply Chain Management						
OEL-220 B- ETC Digital Marketing						

NEP 2020 Compliant Curriculum Structure

Second Year Engineering (2024 Pattern) Electronics and Telecommunication Engineering

Semester II

				Lev	el 5.0												
Course Code	ourse Code Course Type Course Name		Course Type Course Name		Course Type Course Name		Teaching Scheme (Hrs/week)		Examination Scheme and Marks					Credits			
			Theory	Tutorial	Practical	CCE*	End Sem	Term Work	Practical	Oral	Theory	Tutorial	Practical	Total			
				Seme	ester II												
PCC-206-ETC	Program Core Course	Communication Engineering	3	-	-	30	70	-	-	-	3	-	-	3			
PCC-207-ETC	Program Core Course	Signals and Systems	3	-	-	30	70	-	-	-	3	-	-	3			
PCC-208-ETC	Program Core Course	Control Systems	3	-	-	30	70	-	-	-	3	-	-	3			
PCC-209-ETC	Program Core Course-Lab	Communication Engineering Lab	-	-	2	-	-	25	50	-	-	-	1	1			
PCC-210-ETC	Program Core Course-Lab	Control Systems & Signals and Systems Lab	-	-	2	-	-	25	-	25	-	-	1	1			
OEL-221-ETC	Open Elective	Open Elective - II	3	-	-	30	70	-	-	-	3	-	-	3			
MDM-231-ETC	Multi- disciplinary Minor	Object oriented Programing	-	1	2	-	-	50	50	-	-	1	1	2			
VSE-270-ETC	Vocational and Skill Enhancement Course	Electronics Skill Development Lab	-	-	2	-	-	25	-	-	-	-	1	1			
AEC-281-ETC	Ability Enhancement Course	Modern Indian Languages (Marathi/Hindi)	-	-	2	-	-	25	-	-	-	-	1	1			
EEM-241-ETC	Entre- preneurship /Economics/ Management	Entrepreneurship skill Development	-	1	2	-	-	25	-	-	-	1	1	2			
VEC-251-ETC	Value Education Course	Environment Awareness	-	-	4	-	-	-	-	-	-	-	2	2			
	Total		12	02	16	120	280	175	100	25	12	02	08	22			

Open Elective - II						
OEL-221 A- ETC Business Analytics						
OEL-221 B- ETC Project Management						

Savitribai Phule Pune University, Pune

Maharashtra, India

SE - Electronics and Telecommunication Engineering

2024 Pattern

Semester III

With effect from Academic Year 2025-26

PCC-201-ETC: Electronics Circuits								
I	Teaching /scheme	Credits	Examination Scheme					
Theory	r:03 Hours/Week	03	CCE* Marks : 30 Marks End Semester (Theory) : 70 Marks					
Prerequ	uisite Courses, if any: ESC	 -101-ETC - Basic El	 ectronics Engineering					
Compai	nion Course, if any: PCC-2	01-ETC - Electroni	Circuits Laboratory					
Course	Objectives:							
To mak	e students understand							
• Se	miconductor device MOSFE	T, its characteristic	s, parameters & applications.					
C -		1:6:						
• 60	oncepts of feedbacks in amp	olifiers & oscillators						
• Op	perational amplifier, concep	t, parameters & ap	olications.					
• AI	DC, DAC as an interface bet	ween analog & dig	tal domains.					
• Co	oncepts, characteristics & ap	oplications of PLL.						
• Vo	oltage to current and curren	t to voltage conver	ters.					
Course	Outcomes:							
After su	ccessful completion of th	e course, learner v	vill be able to:					
CO1:	Assimilate the physics, c tion as amplifier.	haracteristics and	parameters of MOSFET towards its applica-					
CO2:	Design MOSFET amplifien specifications.	rs, with and without	feedback, & MOSFET oscillators, for given					
	Design, Build and test Op towards various real time		signal processing and conditioning circuits					
CO3:	towards various real time	e applications.						
CO3: CO4:			rious data conversion techniques and PLL					

Course Contents							
Unit IMOSFET & its Analysis(07							
Enhancement MOSFET: MOSFET DC Load line, AC equivalent circuit, Parameters.							
Non ideal chara	cteristics: Finite output resistance, Body effect, Sub-thresh	old conduction,					
breakdown effects	breakdown effects, temperature effect, effect of W/L ratio, Common source amplifier & anal-						
ysis, Source follower: circuit diagram, comparison with common source, Frequency response							
for CS amplifier.	for CS amplifier. Comparison between BJT & MOSFET.						

Mapping of Course Outcomes for Unit I

CO1: Assimilate the physics, characteristics and parameters of MOSFET towards its application as amplifier.

Unit II	MOSFET Circuits	(07 Hours)			
MOSFET as switc	h, CMOS inverter, resistor & diode. Current sink & source,	Current mirror.			
Types of feedback, Four types of feedback topologies, Effects of feedback, Voltage series &					
current series fee	dback amplifiers and analysis. Barkhausen criterion, Types o	of Oscillator, RC			
phase shift oscilla	tor, Crystal Oscillator.				
Mapping of Cour	se Outcomes for Unit II				
CO2: Design MOS	FET amplifiers, with and without feedback, & MOSFET oscill	lators, for given			
specifications.					
Unit III	Operational amplifier and linear Applications	(08 Hours)			
Block diagram, Op	amp parameters, Current mirror, Op-amp characteristics (A	C & DC). Invert-			
ing amplifier (Vo	ltage series), non-inverting amplifier(voltage shunt), Effect	on Ri, Ro, gain			
& bandwidth., Vol	tage follower, Summing amplifier, Differential amplifier, Prac	ctical integrator,			
first Order Low pa	nss, Practical differentiator, High Pass Filter, Precision half-wa	ve Rectifier			
Mapping of Cour	se Outcomes for Unit III				
CO3: Design, Buil	d and test Op-amp based analog signal processing and cond	itioning circuits			
towards various r	eal time applications.				
Unit IV	Op-amp and Non Linear Applications	(07 Hours)			
Comparator, Schmitt trigger, Square & triangular wave generator, PWM Generator					
DAC & ADC: Resi	stor weighted and R-2R DAC, SAR, Flash and dual slope AD	C Types / Tech-			
niques, Characteristics, block diagrams, Circuits, Specifications, Merits, Demerits, Compar-					
isons.					
Mapping of Cour	se Outcomes for Unit IV				
CO4: Understand	and compare the principles of various data conversion tech	niques and PLL			
with their applicat	tions.				
Unit V	Voltage Regulators	(07 Hours)			
Three terminal v	voltage regulators : Block diagram of power supply, transisto	or series voltage			
regulator Types: Fixed and Variable, Block diagram of linear voltage regulator, IC 317 and					
IC337, Features and specifications, typical circuits, current boosting, Low Dropout Regulator					
(LDO).					
SMPS: Block diagram, Types, features and specifications, typical circuits buck and boost con-					
verter					
Mapping of Cour	se Outcomes for Unit V				
CO5: Analyze and assess the performance of linear and switching regulators, with their vari-					
ants, towards applications in regulated power supplies.					
Mapping of Cour	se Outcomes for Unit V: CO5				
Learning Resour	ces				

Textbooks:

- 1. Donald Neaman, "Electronic Circuits Analysis and Design", Mc Graw Hill, 3rd Edition.
- 2. Ramakant Gaikwad, "Op Amps & Linear Integrated Circuits", Pearson Education.

Reference Books:

1. Millman Halkias, "Integrated Electronics".

2. Phillip E. Allen and Douglas R. Holberg, "CMOS Analog Circuit Design", Oxford, 2nd Edition.

3. Salivahan and Kanchana Bhaskaran, "Linear Integrated Circuits", Tata McGraw Hill.

MOOC / NPTEL Courses:

1. NPTEL Course "Analog Electronic Circuits" https://nptel.ac.in/courses/108/105/ 108105158/

2. NPTEL Course on "Analog Circuits": https://nptel.ac.in/courses/108101094

PCC-202-ETC: Engineering Mathematics III Teaching /scheme Credits Examination Scheme Theory: 03 Hours/Week 03 CCE* Marks : 30 Marks End Semester (Theory) : 70 Marks Prerequisite Courses: Differential and Integral calculus, Taylor series, Differential equations of first order and first degree, Fourier series, Vector algebra and Algebra of complex numbers. Course Objectives: To familiarize the students with concepts and techniques in Ordinary differential equations, Fourier Transform, Z-Transform, Numerical methods, Vector calculus and Statistics & Probability. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: Course Outcomes: After successful completion of the course, learner will be able to: CO1: Solve higher order linear differential equation using appropriate techniques for mod- elling, analyzing of electrical circuits and control systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, nu- merical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiate fugation, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as appli- cable to analyze and interpret experimental data	Savitribai Phule Pune University Second Year of Electronics and Telecommunication Engineering (2024 Course)					
Theory: 03 Hours/Week 03 CCE* Marks : 30 Marks End Semester (Theory) : 70 Marks Prerequisite Courses: Differential and Integral calculus, Taylor series, Differential equations of first order and first degree, Fourier series, Vector algebra and Algebra of complex numbers. Course Objectives: To familiarize the students with concepts and techniques in Ordinary differential equations, Fourier Transform, X-Transform, Numerical methods, Vector calculus and Statistics & Probability. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: C01: Solve higher order linear differential equation using appropriate techniques for mod- elling, analyzing of electrical circuits and control systems. C02: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. C03: Obtain Interpolating polynomials, numerically differentiate and integrate functions, nu- merical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. C04: Perform Vector differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, Gen- eral method, Short methods, Method of variation of parameters, Cauchy's and Legendre's dif- ferential equations, Simult						
End Semester (Theory) : 70 Marks Prerequisite Courses: Differential and Integral calculus, Taylor series, Differential equations of first order and first degree, Fourier series, Vector algebra and Algebra of complex numbers. Course Objectives: To familiarize the students with concepts and techniques in Ordinary differential equations, Fourier Transform, Z-Transform, Numerical methods, Vector calculus and Statistics & Probability. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: C01: Solve higher order linear differential equation using appropriate techniques for modelling, analyzing of electrical circuits and control systems. C02: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. C03: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. C04: Perform Vector differential for a integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. C05: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. <td>Teaching</td> <td colspan="4"></td>	Teaching					
Prerequisite Courses: Differential and Integral calculus, Taylor series, Differential equations of first order and first degree, Fourier series, Vector algebra and Algebra of complex numbers. Course Objectives: To familiarize the students with concepts and techniques in Ordinary differential equations, Fourier Transform, Z-Transform, Numerical methods, Vector calculus and Statistics & Probability. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: CO1: Solve higher order linear differential equation using appropriate techniques for modelling, analyzing of electrical circuits and control systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-anguetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. Linear Differential Equations (LDE) and Applications (08 Hours)	Theory: 03 Hours/Week03CCE*			CCE* Marks : 30 Mark	ζS	
order and first degree, Fourier series, Vector algebra and Algebra of complex numbers. Course Objectives: To familiarize the students with concepts and techniques in Ordinary differential equations, Fourier Transform, Z-Transform, Numerical methods, Vector calculus and Statistics & Probability. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: C01: Solve higher order linear differential equation using appropriate techniques for mod- eiling, analyzing of electrical circuits and control systems. C02: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. C03: Obtain Interpolating polynomials, numerically differentiate and integrate functions, nu- merical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. C04: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. C05: Apply Statistical methods like correlation, regression and Probability theory as appli- cable to analyze and interpret experimental data related to signal, communication and information theory. LDE of n th order with constant coefficients, Complementary Function, Particular Integral, Gen- eral method, Short methods, Method of variation of parameters, Cauchy's and Legendre's dif- ferential equations. Simultaneous differential equations, Modeling of electrical circuits. Unit I Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differential- inferentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Ruege-				End Semester (Theory	y) : 70 Marks	
order and first degree, Fourier series, Vector algebra and Algebra of complex numbers. Course Objectives: To familiarize the students with concepts and techniques in Ordinary differential equations, Fourier Transform, Z-Transform, Numerical methods, Vector calculus and Statistics & Probability. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: CO1: Solve higher order linear differential equation using appropriate techniques for mod- eiling, analyzing of electrical circuits and comtrol systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, nu- merical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as appli- cable to analyze and interpret experimental data related to signal, communication and information theory. DE Course Contents Unit 1 Linear Differential Equations (LDE) and Applications (O8 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, Gen- eral method, Short methods, Method of variation of parameters, Cauchy's and Legendre's dif- ferential equations. Simultaneous differential equations, Modeling of electricat Unit 1 Numerical Methods (O8 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differential- Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differ						
Course Objectives: To familiarize the students with concepts and techniques in Ordinary differential equations, Fourier Transform, Z-Transform, Numerical methods, Vector calculus and Statistics & Probability. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: CO1: Solve higher order linear differential equation using appropriate techniques for modelling, analyzing of electrical circuits and control systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of elect	Prerequisite Cou	rses: Differential	and Integral calculus	, Taylor series, Different	ial equations of first	
To familiarize the students with concepts and techniques in Ordinary differential equations, Fourier Transform, Z-Transform, Numerical methods, Vector calculus and Statistics & Probability. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: CO1: Solve higher order linear differential equation using appropriate techniques for mod- elling, analyzing of electrical circuits and control systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, nu- merical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as appli- cable to analyze and interpret experimental data related to signal, communication and information theory. CO3: Differential Equations (LDE) and Applications (08 Hours) LDE of <i>n</i> th order with constant coefficients, Complementary Function, Particular Integral, Gen- eral method, Short methods, Method of variation of parameters, Cauchy's and Legendre's dif- ferential equations, Simultaneous differential equations, Modeling of electrical Unit I Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge- Kutta 4th		-	es, Vector algebra and	Algebra of complex nun	nbers.	
Transform, Z-Transform, Numerical methods, Vector calculus and Statistics & Probability. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: COI: Solve higher order linear differential equation using appropriate techniques for modelling, analyzing of electrical circuits and control systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. Co1: Course Contents Unit 1 Linear Differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy	-					
is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: CO1: Solve higher order linear differential equation using appropriate techniques for modelling, analyzing of electrical circuits and control systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. CD5: Linear Differential Equations (LDE) and Applications [08 Hours] LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General equations, Simultaneous differential equations, Modeling of electrical circuits. Dint I Numerical Methods [08 Hours] Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.				-	-	
that would enhance analytical thinking power, useful in their disciplines. Course Outcomes: After successful completion of the course, learner will be able to: CO1: Solve higher order linear differential equation using appropriate techniques for modelling, analyzing of electrical circuits and control systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. LDE of <i>n</i> th order with constant coefficients, Complementary Function, Particular Integral, General equations, Simultaneous differential equations, Modeling of electrical circuits. Unit I Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.					-	
Course Outcomes: After successful completion of the course, learner will be able to: CO1: Solve higher order linear differential equation using appropriate techniques for modelling, analyzing of electrical circuits and control systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. Cost: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. Course Contents Unit I Linear Differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit I<		-			and its applications	
After successful completion of the course, learner will be able to: C01: Solve higher order linear differential equation using appropriate techniques for modelling, analyzing of electrical circuits and control systems. C02: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. C03: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. C04: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. C05: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Modeling of electrical circuits. Unit I Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.		2	king power, useful ir	their disciplines.		
 CO1: Solve higher order linear differential equation using appropriate techniques for modelling, analyzing of electrical circuits and control systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiate quation, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. CO5: Apply Statistical methods like correlations (LDE) and Applications (O8 Hours) LDE of nth order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit I Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods. 				1 h h l		
elling, analyzing of electrical circuits and control systems. CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. Course Contents Unit 1 Linear Differential Equations (LDE) and Applications (O8 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit 11 Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Methods (08 Hours) Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method,		•	·			
 CO2: Apply concept of Fourier transform & Z-transform and its applications to continuous & discrete systems, signal & image processing and communication systems. CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. CO4: Define with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit I Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods. 		-	-		nniques for mod-	
An optimized in the system of the system optimized in the system optimized is a system optimized in the system optimized is a system optimized in the system optis and the system optis and the system optimized in the system opti				-		
 CO3: Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. CO4: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. CO4: CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. CO5: LDE of <i>n</i>th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit II Numerical Methods (O8 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods. 	115	-				
merical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing. C04: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. C05: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. Course Contents Unit I Linear Differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit II Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.		•	0 1 0	-		
methods used in modern scientific computing. C04: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. C05: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. Course Contents Unit I Linear Differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit II Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.						
C04: Perform Vector differentiation & integration, analyze the vector fields and apply to electro-magnetic fields & wave theory. C05: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. Course Contents Unit I Linear Differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit II Numerical Methods Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.			-	sing single step and m	ulti-step iterative	
electro-magnetic fields & wave theory. CO5: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. Course Contents Unit I Linear Differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit II Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.			i c	and the sector Cal	de and surplus to	
C05: Apply Statistical methods like correlation, regression and Probability theory as applicable to analyze and interpret experimental data related to signal, communication and information theory. Course Contents Course Contents Unit I Linear Differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulæe, Numerical differentiation. Numerical and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.				analyze the vector fiel	las and apply to	
In Proceeding In Proceeding cable to analyze and interpret experimental data related to signal, communication and information theory. Information theory. Course Contents Unit I Linear Differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Unit II Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.		-				
information theory. Course Contents Unit I Linear Differential Equations (LDE) and Applications (08 Hours) LDE of n th order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits. Ounit II (08 Hours) Unit II Numerical Methods (08 Hours) Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods. Hours	115					
Course ContentsUnit ILinear Differential Equations (LDE) and Applications(08 Hours)LDE of nth order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits.Unit IINumerical Methods(08 Hours)Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation.Numerical and Simpson's rules, Bound of truncation error.Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.Interpolation: Finite Differential equations: Euler's method, Source and S						
Unit ILinear Differential Equations (LDE) and Applications(08 Hours)LDE of nth order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits.Unit IINumerical Methods(08 Hours)Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation.Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error.Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.Interpolation: Finite Differences of the predictor differences	Informa	ation theory.				
LDE of nth order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits.Unit IINumerical Methods(08 Hours)Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation.Numerical and Simpson's rules, Bound of truncation error.Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.Integration: Integration: Integration: Corrector methods.			Course Conte	nts		
LDE of nth order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's differential equations, Simultaneous differential equations, Modeling of electrical circuits.Unit IINumerical Methods(08 Hours)Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation.Numerical and Simpson's rules, Bound of truncation error.Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta 4th order method, Predictor-Corrector methods.Integration: Integration: Integration: Corrector methods.	Unit I					
ferential equations, Simultaneous differential equations, Modeling of electrical circuits.Unit IINumerical Methods(08 Hours)Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation.Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error.Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge- Kutta 4th order method, Predictor-Corrector methods.						
Unit IINumerical Methods(08 Hours)Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation.Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error.Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge- Kutta 4th order method, Predictor-Corrector methods.	eral method, Short methods, Method of variation of parameters, Cauchy's and Legendre's dif-					
Unit IINumerical Methods(08 Hours)Interpolation: Finite Differences, Newton's and Lagrange's interpolation formulae, Numerical differentiation.Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error.Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge- Kutta 4th order method, Predictor-Corrector methods.	ferential equation					
differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge- Kutta 4th order method, Predictor-Corrector methods.						
differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge- Kutta 4th order method, Predictor-Corrector methods.						
Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge- Kutta 4th order method, Predictor-Corrector methods.	differentiation.					
Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge- Kutta 4th order method, Predictor-Corrector methods.	Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error.					
Kutta 4th order method, Predictor-Corrector methods.	-	Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-				
	Kutta 4th order method, Predictor-Corrector methods.					
	Unit III			sforms	(08 Hours)	

Fourier Transform (FT): Complex exponential form of Fourier series, Fourier integral representation, Fourier sine and cosine integrals, Fourier transform, Fourier sine and cosine transforms and their inverses.

Z-Transform (ZT): Introduction, Definition, Standard properties, ZT of standard sequences and their inverses, Solution of difference equations.

Unit IV	Vector Calculus	(08 Hours)
Vector differentia	Solenoidal and	
Irrotational fields, Vector identities.		

Vector integration: Line, Surface and Volume integrals, Green's Lemma, Gauss's Divergence theorem and Stokes' theorem.

Applications to problems in Electro-magnetic fields.

Unit V	Statistics and Probability	(08 Hours)

Statistics: Measures of central tendency, Measures of dispersion, Coefficient of variation, Moments, Skewness and Kurtosis, Correlation and Regression, Reliability of Regression estimates. Probability: Probability density function, Probability distributions – Binomial, Poisson, Normal. Test of Hypothesis: Chi-square test.

Learning Resources

Text Books:

- 1. Higher Engineering Mathematics by B.V. Ramana (Tata McGraw-Hill).
- 2. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi).

Reference Books:

- 1. Advanced Engineering Mathematics, 10e, by Erwin Kreyszig (Wiley India).
- 2. Advanced Engineering Mathematics, 2e, by M. D. Greenberg (Pearson Education).
- 3. Advanced Engineering Mathematics, 7e, by Peter V. O'Neil (Cengage Learning).
- 4. Differential Equations, 3e by S. L. Ross (Wiley India).
- 5. Numerical Methods for Engineers, 7e by S. C. Chapra and R. P. Canale (McGraw-Hill Education).

6. Introduction to Probability and Statistics for Engineers and Scientists, 5e, by Sheldon M. Ross (Elsevier Academic Press).

Savitribai Phule Pune University Second Year of Electronics and Telecommunication Engineering (2024 Course)				
	C-203-ETC: Digita			
Teaching /scheme Credits Examination Scheme				
Theory: 03 Hours/Week03CCE* Marks : 30 Marks		CCE* Marks : 30 Marks		
		End Semester (Theory) : 70 Marks		
Prerequisite Courses: Basic gates,	Number Systems ar	d their conversations of BXE		
Companion Course : Laboratory Pr	acticals			
Course Objectives:				
To make students understand				
implement logical operations.		heir applications viz. counters, processes and and apply them in state machines.		
• To understand the digital logic families and system design using programmable logic devices.				
• CTo understand the concepts of VHDL and its fundamental applications.				
Course Outcomes:				
After successful completion of the course, learner will be able to:				
CO1: Analyze, design and implement combinational logic circuits.				
CO2: Analyze, design and imple	D2: Analyze, design and implement sequential circuits.			
CO3: Analyze, design FSM and	CO3: Analyze, design FSM and ASM.			
CO4: Understand various digita	04: Understand various digital parameters and analyze digital system design using PLD.			
CO5: Understand the fundament	D5: Understand the fundamentals of VHDL.			

Course Contents					
Unit ICombinational Logic Design(08 Hours)					
Definition of com	binational logic, Standard representations for logic function	ons, k-map rep-			
resentation of log	gic functions (SOP and POS forms), minimization of logica	al functions for			
min-terms and m	min-terms and max-terms (upto 4 variables), don't care conditions, Design Examples: Half				
Adder, Full adder, Half Subtractor, Full Subtractor, Adder and their use as subtractor, look					
ahead carry generator, Code converters (BCD to Gray, BCD to Excess-3, 4-bit Binary to Gray),					
2-bit Comparator, Multiplexers, multiplexer trees, Demultiplexers, Demultiplexer trees and 3:					
8 Decoders.					
Exemplar: Arithmetic Logic Unit (ALU), Scientific calculator, computing engines, industrial					

control systems, consumer electronics.

Mapping of Course Outcomes for Unit I: CO1 Sequential Logic Design Unit II

(08 Hours)

1-Bit Memory Cell/latch, Clocked SR flip flop, J-K flip flop, M-S J-K flip flop, D and T flipflops. Use of preset and clear terminals in flip flops, Excitation Table for flip flops, Conversion of flip flops, Registers, Shift registers, Counters (ring counters, twisted ring counters), ripple counters, Mod-n counters, up/down counters, synchronous counters, Sequence Generators using flip flops. **Exemplar**: Memories, Rolling display boards, Microprocessors, Consumer electronics. **Mapping of Course Outcomes for Unit II: CO2 Unit III State Machines** (08 Hours) Moore and Mealy machines, State diagram, State table, State reduction, State assignment, Finite state machine implementation, Sequence detector. Introduction to Algorithmic state machines- construction of ASM chart and realization for sequential circuits. **Exemplar:** ATM machine, vending machine and traffic lights **Mapping of Course Outcomes for Unit III: CO3 Digital Logic Family and Programmable Logic Devices** Unit IV (08 Hours) Digital Logic Family: Performance parameters of digital ICs- fan in, fan out, noise margin, propagation delay, power dissipation. Operation of TTL NAND gate. CMOS inverter, NAND, NOR gates. Comparison of CMOS and TTL. Programmable Logic Devices: Detail architecture of PROM, PAL, PLA and Designing combinational circuits using PLDs. General Architecture and specifications of FPGA and CPLD. **Exemplar**: High speed computing boards, automotive electronics **Mapping of Course Outcomes for Unit IV: CO4** Unit V **Introduction to VHDL** (08 Hours) Introduction to Library, Entity and Architecture Modeling styles, Data objects, Concurrent and sequential statements, Design examples using VHDL for basic gates, full adder, full subtractor, multiplexer and D & T flip-flops using behavioral modelling style. Exemplar: Hardware lock and serial port communication. **Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks:** 1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Publication 2. Thomas Floyd, "Digital Fundamentals", Pearson Publication, India **Reference Books:** 1. John. F. Wakerly, "Digital Design- Principles and Practices", Pearson Publication 2. M. M. Mano, "Digital Design," Prentice Hall India. 3. Stephen Brown, "Fundamentals of digital logic design with VHDL" Tata McGraw Hill Publication e-Books: https://www.mheducation.co.in/modern-digital-electronics-9789355321770-india

MOOC / NPTEL/YouTube Links: https://nptel.ac.in/courses/108/105/108105132/

Exemplar: These are real-life examples to create interest in the teaching learning process. No question should be asked in examinations on exemplars.

Savitribai Phule Pune University Second Year of Electronics and Telecommunication Engineering (2024 Course)				
PCC-20	4-ETC: Electronics	s Circuits Lab		
Teaching /schemeCreditsExamination Scheme				
Practical : 02 Hours/Week	01	TW: 25 Marks , Practical : 50 Marks		
Prerequisite Courses, if any:				
Companion Course, if any: Electro	nics Circuits			
Lis	t of Laboratory Ex	periments		
	Group A: Compu	lsory		
1. Design, build single stage CS confi	guration & verify D	C operating point and comment on results.		
2. Implement current series feedba	ck amplifier & mea	asure <i>R_{if}</i> , <i>R_{of}</i> , <i>G_{mf}</i> and comment on result.		
3. Design, build & test integrator/dif	ferentiator using O	p-Amp and comment on result.		
4. Design, build & test Schmitt trigge	er using Op-Amp an	d comment on result.		
5. Design & implement adjustable	voltage regulator ı	using IC LM317/LM337 and comment on		
result.				
Group B: Any Three to be Performed				
6. Simulate voltage series feedback amplifier & measure R_{if} , R_{of} , A_{vf} , bandwidth and comment				
on result.				
7. Design, build & test square and triangular waveform generator using Op-Amp.				
8. Design, build & test 2 or 3-bit R-2	R ladder DAC.			
9. Design, build & test half-wave and	l full-wave rectifier			
10. Design, build & test first order ac	tive low pass / hig	h pass filter.		
Group C: Course Project (Any 1 – Group of 3 Students)				
11. Case Study 1: Design and implement a linear regulator variable power supply.				
12. Case Study 2: Design and implement signal conditioning circuit for temperature measurement				
and control system.				
Virtual LAB Links:				
1. Integrated Circuits: http:, electronerds/index.html	//vlabs.iitb.ac.in/v	labs-dev/vlab_bootcamp/bootcamp/		

2. Basic Electronics Virtual Lab: http://vlabs.iitkgp.ernet.in/be/

Note:

1. One practical from each Group should be performed as simulation practical (using any available tool).

2. Additional (min. 2) practicals are to be performed using Virtual Lab.

	Guidelines for Student's Lab Journal Title of the experiment			
	Title of the experiment			
2				
	Problem Statement			
3	Logic Design of given problem statement			
4	Logic diagram with IC number pin connections			
5	Observation table / Truth table			
6 '	Timing diagram			
7	Result table			
8	Conclusions			
9	Mention real life examples concerned with the respective experiments			
	Guidelines for Laboratory / Term Work Assessment			
1	Continuous assessment of laboratory work based on overall performance and			
]	laboratory performance of students.			
2	Each laboratory assignment assessment should assign grade/marks based on pa-			
1	rameters with appropriate weightage.			
3	Suggested parameters include timely completion, performance, efficiency, punc-			
1	tuality, and neatness.			
	Suggested List of Laboratory Experiments (Any 8)			
1	Design and Implement 8:1 MUX using IC-74153 & Verify its Truth Table.			
]	Design & implement the given 4-variable function using IC-74153. Verify its			
,	Truth Table.			
2	Design and implement full adder and full subtractor function using IC-74138.			
3	Design and implement 3-bit Binary to Gray code converter and BCD to Excess-3			
(code converter using IC-74138.			
4	Design and Implement 1-digit BCD adder using IC-7483.			
5	Design and Implement 4-bit Binary adder and subtractor with mode control using			
]	IC-7483.			
6	Design and Implement MOD-N and MOD-NN using IC-7490 and draw Timing			
(diagram.			
7	Design & Implement Up/down Counter with mode control using IC-74191 / IC-			
	74193. Draw Timing Diagram.			
8	Design and Implement 4-bit right shift and left shift register using D-flip flop			
]	IC-7474.			
9	Design and Implement Pulse train generator using IC-74194 / IC-7495 (Use			
]	right/left Shift).			
10	Design and Implement 4-bit Ring Counter / Twisted ring Counter using shift			
]	registers IC-74194 / IC-7495.			

Note: Additional (min. 2) practicals based on applications are to be performed using Virtual Lab.

- 1. **Digital Applications Lab:** https://da-iitb.vlabs.ac.in/List%20of%20experiments. html
- 2. Hybrid Electronics Lab: https://he-coep.vlabs.ac.in/List%20of%20experiments.html

Note:

1. One practical from each Group should be performed as simulation practical (using any available tool).

2. Additional (min. 2) practicals are to be performed using Virtual Lab.

Concerned		avitribai Phule Pune	2	4 (
Second		D A- ETC: Supply Ch	cation Engineering (2024	4 Coursej	
Teaching		Credits	Examination	Scheme	
	Cheory: 03 Hours/Week 03 CCE : 30 Marks				
j i i j	-,		End-Semester: 70 Mar	·ks	
Course Objectives	S :	1			
 To become fator To study the To study the To study the To study the Course Outcomes After successful c CO1: Describe CO2: Explain CO3: Identify CO4: Unders 	amiliar with flow supply chain man customer require ompletion of the e the key concept the structure of man the various flows tand the key Open	of supply chain and nagement building b ements and expected course, students w ts of Supply Chain M nodern-day supply ch in real world supply rational Aspects in S	ocks. services. Il be able to: fanagement ains	t	
		Course Conte	ents		
Unit I	Unit ISupply Chain Structure(08 Hours)				
Shift from enterprise to network, Structure of a SC, Push based SC, Pull based SC, Tradeoff					
between Push & F	Pull, Identifying a	appropriate Push &	Pull Strategy for SC, Cor	nmodity & cost	
centric SC, Agile					
Unit II		Flows in Supply	Chain	(08 Hours)	
Forward & Revers	se SC, Product, Se	ervices, Information	Funds, Demand, Foreca	ast flows in Up-	
stream & Downstr	eam direction				
Unit III	Tot	al Sunnly Chain ma	nagomont	(08 Hours)	

Unit III	Total Supply Chain management	(08 Hours)		
business landscape – driving forces: Shift from Operations to Services, Impact of globalization				
& technological revolution, shift from linear SC to collaborative networks, power shifts in the				
SC- demands for flexibility of partnerships, core competencies, growth in outsourcing				
Unit IV	Supply Chain management Building Blocks	(08 Hours)		

Unit IV	Supply Chain management Building Blocks(08 Hours)			
Overview of customer focus & demand, resources & capacity management, procurement &				
supplier focus, inventory management, operations management, distribution management in				
SCM				
Unit V	Customer Value	(08 Hours)		

Empowered consumer, Customer focused Marketing & SC service outputs, customer service – availability, operational performance, reliability. Customer satisfaction – customer expectations, enhancing customer satisfactions, limitations of customer satisfaction. Customer success – achieving customer success, value added services, customer value requirement mapping

Learning Resources

Textbooks:

1. Supply Chain & Logistics Management, Bowersox, Closs & Cooper, Tata McGraw Hill

2. Designing & Managing the SC – Concepts, Strategies & Case studies, Levi, Kaminsky et. al., Tata McGraw Hill

3. Supply Chain Management: Strategy Planning & Operations, Sunil Chopra, Peter Meindl, Pearson

Reference Books:

- 1. Supply Chain Management Process, System & Practice, Chandrasekaran, Oxford
- 2. Total Supply Chain Management, Basu & Wright, Elsevier
- 3. Logistics Management & Strategy, Harrison and van Hoek, Prentice Hall
- 4. Supply Chain Management, Mentzer, Response Books.
- 5. Logistics Management: The Supply Chain Imperative, Vindo Sople, Pearson Education

Savitribai Phule Pune University Second Year of Electronics and Telecommunication Engineering (2024 Course)			
OEL-220 B-ETC: Digital Marketing			
Teaching /scheme Credits		Examination Scheme	
Theory: 03 Hours/Week	03	CCE : 30 Marks	
		End-Semester: 70 Marks	

Companion Course : Information and Cyber Security Laboratory **Course Objectives:** The course aims to:

- 1. To understand the basic Concepts of Digital marketing and the road map for successful Digital marketing strategies.
- 2. To know the importance of Social Media Platforms importance in Digital Marketing
- 3. To understand the technological importance of Search Engine Optimization (SEO)

Course Outcomes: Upon successful completion of this course, students will be able to:

- CO1: Learn and understand the basic Concepts of Digital marketing
- CO2: Apply digital marketing tools for suitable applications
- CO3: Examine the various social media and design Advertising campaigns
- CO4: Learn search engine optimization (SEO) techniques and apply it for suitable application to increase page views.
- CO5: Explore YouTube Digital Advertising

, Z	Course Contents	#
Unit I - Introductio	on to Digital Marketing (08 Hours)	

Fundamentals of Digital marketing & Its Significance, Traditional marketing Vs Digital Marketing, Evolution of Digital Marketing, Digital Marketing Landscape, Key Drivers, The Digital users in India, Digital marketing Strategy- Consumer Decision journey Digital advertising Market in India, Skills in Digital Marketing, Digital marketing Plan.

Unit II - Digital Marketing Terminology (08 Hours)

Terminology used in Digital Marketing, PPC and online marketing through social media, Social Media Marketing, Google web-master and analytics overview, Email Marketing, Mobile Marketing Display adverting, Buying Models, different type of ad tools, Display advertising terminology, types of display ads, different ad formats

Unit III - Social Media Marketing (08 Hours)

Fundamentals of Social Media Marketing& its significance, Necessity of Social media Marketing Facebook Marketing: Facebook for Business, Facebook Insight, Different types of Ad formats, setting up Facebook Advertising Account, Facebook audience & types, Designing Facebook Advertising campaigns, Facebook Avatar, Apps, Live, Hashtags

Unit IV - Search Engine Optimization (SEO) (08Hours)

Introduction to SEO, How Search engine works, SEO Phases, History Of SEO, How SEO Works, Googlebot (Google Crawler), Types of SEO technique, Keyword Planner tools

Social media Reach- Video Creation & Submission, Maintenance- SEO tactics, Google search Engine

Unit V - Digital Advertising (08 Hours)

Different Digital Advertisement, Display Advertising Media

YouTube Advertising:- YouTube Channels, YouTube Ads, Type of Videos, Buying Models, Targeting & optimization, Designing & monitoring Video Campaigns, Display campaigns

Intrusion Detection System: IDS fundamentals, Different types of IDS. Intrusion Prevention.

Learning Resources

• Text Books:

- 1. V. Ahuja, Digital Marketing, Oxford University Press
- 2. D. Ryan, C. Jones, "Understanding Digital Marketing Strategies for Engaging the Digital Generation", Koganpage Publication, (2nd Edition)
- 3. Chinmay Kamat, Nitin Kamat, "Digital Marketing", Himalaya Publishing House, (2nd Edition)

• Reference Books:

- 1. H. Annmarie , A. Joanna, "Quick win Digital Marketing", Paperback edition, Oak Tree Press
- 2. Seema Gupta, "Digital Marketting", Mc Graw Hill (3d Edition)

			unication Engineering (2024 Course)				
	MDM-230-ETC: Multidi	sciplinary Minor	-1 Data Structures and Algorithms				
	Teaching /schemeCreditsExamination Scheme					eaching /scheme Credits Examina	
Tutoria	utorial: 01 Hour/Week 01 TW : 50 Marks						
Practic	al : 02 Hours/Week	01	Practical: 50 Marks				
Prerequ	uisite Courses: Fundamenta	ls of Programmin	g Languages, Basics of C Programming				
Course	Objectives:						
To mak	e students understand						
us	ing the C language.		and implement searching and sorting methods tance of time and space complexity.				
us • To • To da	ing the C language. b learn the concept and unde b understand data represent ata structures.	erstand the import					
us • To • To da Course	ing the C language. b learn the concept and unde b understand data represent	erstand the importation, implement	tance of time and space complexity.				
us • To • To da Course	o learn the concept and understand data represent o understand data represent ata structures. Outcomes: accessful completion of the	erstand the import ation, implement course, student	tance of time and space complexity.				
us • To • To da Course After su CO1:	ing the C language. b learn the concept and under c understand data represent ata structures. Outcomes: accessful completion of the Apply and implement the	erstand the import ation, implement course, student principal sorting	tance of time and space complexity. ation and applications of linear and nonlinear s will be able to: and searching algorithms on the given data				
us • To da Course After su CO1: CO2:	sing the C language. b learn the concept and under c understand data represent ata structures. Outcomes: accessful completion of the Apply and implement the using the C language.	erstand the import ration, implement e course, student e principal sorting tack and queue us	tance of time and space complexity. ation and applications of linear and nonlinear s will be able to: and searching algorithms on the given data sing arrays.				
us • To • To da Course After su	sing the C language. b) learn the concept and under c) understand data represent ata structures. Outcomes: Iccessful completion of the Apply and implement the using the C language. Develop applications of st	erstand the import ation, implement course, student principal sorting tack and queue us ate the applicabili	tance of time and space complexity. ation and applications of linear and nonlinear s will be able to: and searching algorithms on the given data sing arrays. ty of a Linked List.				

Course Contents				
Unit I	Unit I Introduction to Data Structures and Complexity (04 Hours)			
	Analysis			
Overview of Dat	a Structures – Linear vs. Non-linear structures, Abstract Da	ta Types (ADT),		
Algorithm Analysis – Time and Space Complexity, Asymptotic Notations – Big 0, Omega,				
Theta, Best, Worst, and Average Case Analysis, Searching Algorithms – Linear Search, Binary				
Search, Sorting Algorithms – Bubble, Selection, Insertion				
Unit II	Stack and Queue	(04 Hours)		
Stack - Implementation using Arrays, Applications (Infix to Postfix, Expression Evaluation),				
Queue – Implementation, Circular Queue, Priority Queue				
Unit III	Linked List	(04 Hours)		
Pointers: Basic concepts, Pointer declaration and initialisation, Dynamic Memory Allocation				
(malloc, calloc, realloc, free), Linked Lists – Singly, Doubly, and Circular Linked Lists; Stack				
and Queue implementation using Linked list				
Unit IV	Non-linear Data Structure: Tree	(03 Hours)		

Trees – Terminology, Binary Trees, Binary Search Trees (BST), Operations, **Tree Traversals** – Inorder, Preorder, Postorder (Recursive and Iterative)

Unit V	Non-linear Data Structure: Graphs	(03 Hours)		
Graphs: Represe	ntation (Adjacency Matrix/List), Traversal: BFS, DFS; Mini	mum Spanning		
Tree (Prim's and Kruskal's Algorithm)				
Learning Resources				
Territoria				

Textbooks:

Ellis Horowitz and Sartaj Sahni, "Fundamentals of Data Structures", Galgotia Books Source,
 2nd Edition

2. Richard. F. Gilberg and Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C," Cengage Learning, 2nd Edition.

Reference Books:

1. Reema Thareja, "Data Structures using C", Oxford University Press, 2nd Edition

2. Yedidyah Langsam, Moshe J Augenstein and Aaron M Tenenbaum "Data structures using C and C++" PHI Publications, 2nd Edition.

MOOC / NPTEL Courses:

1. Data Structure using C Programming by Dr. Dipti Verma and Mr. Aditya Tiwari: https://onlinecourses.swayam2.ac.in/nou23_cs13/preview

2. Data Structures and Algorithms: https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01384203240484864010470_shared/overview

3. Data Structures in C: https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013299625203884032379/overview

		Group A: Com	pulsory		
1	Student Database Ma	nagement			
	You are developing a student result management system. The database should support				
	updating records, adding new entries, searching for specific students, and sorting based				
	on performance.	on performance.			
	Using an array of stru	Using an array of structures, implement a student database with attributes: roll no,			
	name, program, cours	name, program, course, subject marks, total, and average. Support operations: dis-			
	play, search, and sort.	play, search, and sort. (Students can additionally perform modify, append.)			
2	Stack or Queue using	g Array (Static Imp	lementation)		
	Simulate a parcel handling system at a post office where packages are stacked (L			ages are stacked (LIFO) or	
	queued (FIFO).				
	Use an array to imple	ment a stack (push,	, pop, display) or	a queue (add, delete, dis-	
	play). Choose the appr	copriate model base	d on the scenario.		
3	Singly Linked List Op	erations			
	You are building a tex	t editor where lines	of text are stored	dynamically. You need to	
	allow insertion and de	allow insertion and deletion of lines at any position, and display text both normally and			
	in reverse.	in reverse.			
	Use a singly linked list	Use a singly linked list to implement: display, insert (front/end/middle), delete (fron-			
	t/end/middle), display in reverse, and reverse the list.				
4	Binary Search Tree O	perations			
	An online directory syst	An online directory system uses a BST to keep names in a sorted manner and support fast			
	searching.	searching.			
	Create a binary search tree and implement recursive traversals (inorder, preord			lls (inorder, preorder, pos-	
	torder) and search for a specific name in the directory.				
5	Graph Traversal				
	You are designing a navigation system for a campus with multiple buildings.			iple buildings. The system	
should explore possible paths (routes) using BFS or DFS.					
	Create a graph using an adjacency matrix and implement Breadth-First Search and			Breadth-First Search and	
	Depth-First Search to	explore the building	connectivity.		
		roup B: [Any 5 to b			
6	Write a program in C		•••		
	Right-angle triangle	Diamond shape	Pyramid with	Pyramid using	
	with a number:	with numbers:	an asterisk:	the alphabet:	
	1	1	*	A	
	12	22	* *	ABA	
	123	333	* * *	АВСВА	
	1234	4 4 4 4	* * * *	ABCDCBA	
		333			
		22			
		1			

7	Searching Techniques
	You are building a contact manager app. A user wants to search for a contact either by
	scanning one by one or by using a fast lookup if the list is sorted.
	Write a program that locates a specific name using both sequential and binary search
	techniques.
8	Sorting Algorithms
	An online store wants to sort its product prices to help customers compare them easily.
	Choose suitable sorting techniques for small to medium datasets.
	Implement bubble sort, selection sort, and insertion sort to reorder product prices.
9	Stack or Queue using Linked List (Dynamic Implementation)
	Design a service window system where customers arrive and are served in order (FIFO),
	or a browser history system where the last visited page is accessed first (LIFO).
	Use a linked list to implement a dynamic stack (push, pop, display) or queue (add,
	delete, display) based on the given use case.
10	Balanced Parentheses or Decimal to Binary
	Write a program to check for balanced parentheses in a given expression (including
	(), {}, []) using a stack implemented with arrays or linked lists.
	OR
	Write a program to convert a Decimal number to a binary number using a stack.
11	Height and Depth in BST
	Develop a program that constructs a Binary Search Tree and computes the height of
	the tree and the depth of a given node.
12	Count and Classify Nodes
	Write a program to count the number of:
	- Leaf nodes
	- Internal nodes
	- Nodes with only one child
	in a given binary tree.
13	Train Ticket Booking System:
	Implement a system to manage train ticket bookings using queues. Confirm bookings
	if seats are available; otherwise, add passengers to a waiting list. On cancellation, shift
	the first waiting passenger to confirmed status.
	Group Assignment
Group	Assignment Guidelines:
– Make	a Group of 4 students in a batch (Batch of 20).
– The g	roup will select any of the listed group assignments or propose a similar one with the
course	teacher's approval.
- After	completing the assignment, the group will present it during the practical slot.
	distribution of work in a group during a presentation may include:
• /	Algorithm / Flowchart • Program Explanation • Applications
	Group Assignments

1	Matchstick Game (AI vs Human):			
	Design and implement a console-based Matchstick game where the total number of			
	matchsticks is 21. Two players (user and computer) take turns to pick 1 to 4 match-			
	sticks. The player forced to pick the last matchstick loses. Implement logic so that the			
	computer never loses the game. Use control structures and functions in C.			
	Key Concepts: Loops, conditionals, basic AI, user input validation			
2	Tic-Tac-Toe Game (2-Player Console Version):			
	Create a 2-player Tic-Tac-Toe game that runs in the console. The game board is a 3x3			
	grid where players take turns marking X or O. The game should detect a win, loss, or			
	draw condition and display the result accordingly. Use arrays and functions for board			
	management and input handling.			
	Key Concepts: 2D arrays, game logic, functions, modular programming			
3	Tower of Hanoi (Recursive Approach):			
	Write a program to simulate the Tower of Hanoi puzzle using recursion. The user			
	provides several disks, and the program outputs the sequence of moves to transfer all			
	disks from the source peg to the destination peg following the game rules.			
	Key Concepts: Recursion, stack behavior, algorithm design			
4	Banking Transactions – Mini Statement Generator:			
	Develop a Banking Transaction System that allows the user to enter their account			
	number and perform basic transactions such as deposit and withdrawal. Maintain a			
	log of the last 5 transactions and display them as a mini statement . Use structures to			
	simulate user accounts and transaction history.			
	Key Concepts: Structures, arrays, file handling, menu-driven programs			
5	Typing Tutor (Accuracy and Speed Tracker):			
	Build a Typing Tutor that displays a random sentence for the user to type. After			
	typing, the program calculates the typing speed (WPM), accuracy (%), and suggests			
	corrections for misspelt words.			
	Key Concepts: Strings, time library, error handling, user input analysis			
6	Calendar Generation by Year:			
	Create a program that accepts a year as input and displays the calendar for the			
	entire year. It should accurately calculate leap years and place correct dates under			
	weekdays. Use arrays and functions to handle months, days, and leap year conditions.			
	Key Concepts: Control structures, arrays, functions, date-time logic			

Savitribai Phule Pune University
Second Year of Electronics and Telecommunication Engineering (2024 Course)EEM-240-ETC: Engineering Economics & ApplicationsTeaching /schemeCreditsExamination SchemeTutorial: 01 Hour/Week01TW : 25 MarksPractical : 02 Hours/Week01TW : 25 Marks

Course Objectives:

To make students understand

- To understand key economic principles and the time value of money for engineering decisions.
- To learn demand forecasting, cost analysis, and decision-making under uncertainty.
- To explore market structures, pricing strategies, and value engineering in electronics.
- To develop investment evaluation skills and grasp macroeconomic impacts on tech businesses.

Course Outcomes:

After successful completion of the course, students will be able to:

- **CO1:** Apply economic principles and time value of money concepts using practical tools.
- **CO2:** Perform break-even and CVP analyses to support engineering decisions.
- **CO3:** Analyze market competition and pricing strategies with case studies.
- **CO4:** Evaluate projects with capital budgeting and interpret macroeconomic effects on electronics.

Course Contents			
Unit I	Theories and Laws of Economics for Engineers	(04 Hours)	
Introduction to Engineering Economics, Basic economic concepts: Utility, scarcity, opportunity			
cost, Economic systems and firm objectives, Laws of demand and supply, elasticity, Value,			
wealth, and equilibrium price, Time value of money (Present Value, Future Value, annuity			
basics)			
Unit II	Principles of Engineering Economics and Costing	(04 Hours)	
Demand forecasting techniques and applications in tech markets, Cost behaviour: Fixed, vari-			
able, marginal, total, Cost-volume-profit and break-even analysis, Decision-making under un-			
certainty (intro to decision theory), Economies of scale in electronics manufacturing			
Unit III	Applications of Economics in Electronics Industry	(04 Hours)	
Market structures: Perfect competition, monopoly, monopolistic competition, Pricing strate-			
gies and product lifecycle costing, Game theory basics and strategic behaviour, Make-or-buy			
decisions and Value Engineering in electronics, Kaizen and productivity in technical operations			
Unit IV	Investment Analysis and Applied Macroeconomics	(04 Hours)	

Capital budgeting: Payback period, Net Present Value (NPV), Internal Rate of Return (IRR), Profitability Index, Equipment replacement decisions, Overview of macroeconomic indicators: Gross Domestic Product (GDP), Consumer Price Index (CPI), Business cycles, inflation, interest rates, and impact, CSR, sustainability, and policy impacts on tech firms, Exposure to areas like IPR, R&D, and innovation economics

Tutorials

Any Six Tutorials can be carried out:

- 1. Case examples from electronics industries (e.g., Telecom spectrum pricing, consumer electronics)
- 2. Excel-based Time Value of Money (TVM) computations
- 3. Forecast demand for a telecom device (Routing and Switching Networking communication devices /AI enabled Smart IOT devices and sensor)
- 4. Perform break-even and Cost-Volume-Profit (CVP) analysis using spreadsheets
- 5. Case study: Comparison of Pricing strategy between two service providers such as of Jio, Airtel, BSNL etc.
- 6. To carryout mini project based on market and pricing strategy analysis of a smart device or IoT product
- 7. Evaluate a small-scale engineering project (e.g., setup of a lab or unit based)
- 8. Group discussion: Impact of government policies and budget on electronics and telecom sector

Textbooks:

1. A Textbook of Engineering Economics: The Principles and Applications, D. R. Kiran, BS Publications, 2021.

2. Engineering Economics Test & Cases, D N Dwivedi, Dr H L Bhatia & Dr S N Maheshwari, Vikas Publishing House Pvt. Ltd.

Reference Books:

1. Principles of Engineering Economics with Applications, Zahid A. Khan, Arshad N. Siddiquee, Brajesh Kumar, Mustufa H. Abidi 2nd edition, Cambridge University.

2. Practical Applications of Engineering Economics, Kal R. Sharma, Momentum Press. Engineering Economics, R. Panneerselvam, PHI Learning Private Ltd. **MOOC / NPTEL Courses:**

1. Data Structure using C Programming by Dr. Dipti Verma and Mr. Aditya Tiwari: https://onlinecourses.swayam2.ac.in/nou23_cs13/preview

2. Data Structures and Algorithms: https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01384203240484864010470_shared/overview

3. Data Structures in C: https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013299625203884032379/overview

		avitribai Phule Pune cs and Telecommuni	University cation Engineering (2024 Course)
			lues & Professional ethics
1	Teaching /scheme	Credits	Examination Scheme
Tutoria	l:01 Hour/Week	01	Term Work : 25 Marks
Practic	al : 02 Hours/Week	01	
Prerequ	isite Courses: UHV-1 of St	udent Induction Prog	gram (SIP) (desirable)
Compar	nion Course: Universal Hun	nan Values (Practical)
Course	Objectives:		
The obj	ective of this course is to p	provide students wi	th
	1 1		d-vision, and appreciate the essential com- utual happiness and prosperity
• To	elaborate on 'Self-explorati	on' as the process for	r Value Education
	facilitate the understanding nily and society	of harmony at variou	is levels starting from self and going towards
• Tc	elaborate on the salient asp	pects of harmony in	nature and the entire existence
	explain how the Right und reness of Ethical human cond	-	basis of Universal human values and defini-
	provide the vision for a ho derly life	listic way of living a	nd facilitate transition from chaotic life to an
Course	Outcomes:		
After su	ccessful completion of the	e course, students w	rill be able to:
CO1:	Recognize the concept of s	self-exploration as th	e process of value education and see they
	have the potential to explo	ore on their own righ	t.
CO2:	Explore the human being	as the coexistence	of self and body to see their real needs /
	basic aspirations clearly.		
CO3:			other self as the essential part of relation-
	ship and harmony in the f	-	
CO4 :	-	edness, harmony and	l mutual fulfilment inherent in the nature
60 F	and the entire existence.		
CO5:			nt understanding facilitating the develop- ems and management models.
		sies production syste	הווא הוומוומצרוורווו וווטערוג.

	Course Contents	
Unit I	Introduction to Value Education	(03 Hours)

II. deveter dine Ve	here Education California and the Ducases for Value Edu	antion Continu	
0	lue Education, Self-exploration as the Process for Value Edu		
• •	d Prosperity - the Basic Human Aspirations and their Fulfil		
_	tionship and Physical Facility, Happiness and Prosperity - C	urrent Scenario,	
	ne Basic Human Aspirations		
	pplications using Practical No. 1, 2, 3, 4		
-	nal Growth and Self-Development, Family and Relationships.		
	se Outcomes for Unit I: CO1		
Unit II	Harmony in the Human Being	(03 Hours)	
e	iman being as the Co-existence of the Self and the Body, Di	0 0	
tween the Needs o	of the Self and the Body, The Body as an Instrument of the Self	f, Understanding	
Harmony in the S	elf, Harmony of the Self with the Body, Programme to Ensur	e self-regulation	
and Health.			
Explore real life a	pplications using Practical No. 5, 6		
Exemplar: Journe	ey Towards Self and Body Awareness, Experience of Balancing	g Self and Body.	
Mapping of Cour	se Outcomes for Unit II: CO2		
Unit III	Harmony in the Family and Society	(03 Hours)	
Harmony in the F	amily - the Basic Unit of Human Interaction, "Trust' - the Fou	Indational Value	
in Relationship, 'F	Respect' - as the Right Evaluation, Values in Human-to-Hum	an Relationship,	
Understanding Ha	rmony in the Society, Vision for the Universal Human Order.		
Explore real life a	pplications using Practical No. 7, 8		
Exemplar: A Reb	uilding Family Relationships through Trust and Respect, Build	ding Social Har-	
mony through Val	ue-Based Living		
Mapping of Cour	se Outcomes for Unit III: CO3		
Unit IV	Harmony in the Nature (Existence)	(03 Hours)	
Understanding Harmony in the Nature, Interconnectedness, self-regulation and Mutual Fulfil-			
ment among the l	Four Orders of Nature, Realizing Existence as Co-existence a	t All Levels, The	
Holistic Perception	n of Harmony in Existence.		
Explore real life a	pplications using Practical No. 9, 10, 11		
Exemplar: Realiz	ation through Observing Nature's Cycles, Applying Harmor	ny Principles in	
Life.			
Mapping of Cour	se Outcomes for Unit IV: CO4		
Unit V	Implications of the Holistic Understanding -	(03 Hours)	
	Professional Ethics		
Basis for Univers	al Human Values, Definitiveness of (Ethical) Human Condu	ict, Professional	
	of Right Understanding, A Basis for Humanistic Education, I		
-	versal Human Order, Holistic Technologies, Production Sys		
	Typical Case Studies, Strategies for Transition towards Value		
Profession.	y		
Explore real life a	pplications using Practical No. 12, 13, 14		
-	ng Engineer's Journey to Ethical Professionalism, Commitmen	t to Humanistic	
Education and So			

Mapping of Course Outcomes for Unit V: CO5

Learning Resources

Textbooks:

1. A Foundation Course in Human Values and Professional Ethics, RR Gaur, R Asthana, GP Bagaria, 3rd revised edition, UHV Publications, 2023, ISBN: 978-81-957703-7-3 (Printed Copy), 978-81-957703-6-6 (e-book)

2. Teacher's Manual for A Foundation Course in Human Values and Professional Ethics, RR Gaur, R Asthana, GP Bagaria, 3rd revised edition, UHV Publications, 2023, ISBN: 978-81-957703-5-9 (Printed Copy), 978-81-957703-0-4 (e-Book)

1. Nagaraj A. (1999). Jeevan Vidya: Ek Parichaya. Jeevan Vidya Prakashan. Amarkantak.

2. Dhar, P. L., Gaur, R. R. (1992). Science & Humanism, Towards a Unified World View. India: Commonwealth Publishers.

3. A. Nagraj, 2003, Manav Vyavhar Darshan, Jeevan Vidya Prakasana, Amarkantak.

4. Banerjee, B. P. (2005). Foundations of Ethics in Management. India: Excel Books.

5. Satya, S. (2013). Sah-Astitva Siddhant Evam Samagra Vikas, Part-1(compiled articles of Dr. Yashpal Satya). Jeevan Vidya Pratishthan

e-Books:

https://uhv.org.in/frontend/download/A%20Foundation%20Course%20in%20Human% 20Values%20and%20Professional%20Ethics%20(eBook)v2.pdf

MOOC / NPTEL/YouTube Links:

1. Swayam Course on "Understanding Human Being Nature and Existence Comprehensively" by Dr. Kumar Sambhav, Director, UP Institute of Design (UPID), Noida. https://onlinecourses.swayam2.ac.in/aic22_ge23/preview

2. NPTEL Course on "Exploring Human Values: Visions of Happiness and Perfect Society" by Prof. A. K. Sharma, Department of Humanities and Social Sciences, IIT Kanpur. https://nptel.ac.in/courses/109104068

3. https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw

4. https://www.youtube.com/playlist?list=PLoVRJrAl0FT1DNRtDpYa3SGeMEm06O3Dv

e- Resources

-https://fdp-si.aicte-india.org/download.php#1/ -https://madhyasth-darshan.info/postulations/knowledge/ knowledge-of-humane-conduct/

Exemplar: Exemplar for Universal Human Values lies in demonstrating how values are applied practically in real-life situations to achieve harmony at all levels.

V	EC-250-ETC	Universal Human Values	(TW: 25 Marks)
		Guidelines for TW Assessment	
For Eac	h Practical (14 Se	ctions)	
1. Title	of Practical: E.g.,	Practical 1: Sharing about Oneself	
2. Obje	ctive: Briefly state	the goal of the activity.	
3. Activ	vity Description:	Describe what was done — e.g., discus	ssion, video viewed, list pre-
pared, a	nalysis conducted,	etc.	
4. Your	Observations/Rea	sponses:	
• Sha	re your personal e	xperience and reflections.	
• Des	cribe what you lea	rned.	
• Mer	ntion any change ir	your perspective or feelings.	
5. Lean	r ning Outcome : S	ummarize what you understood or in	ternalized. Align it with the
expecte	d outcome listed fo	r the practical.	
Final R	eflection (1–2 Pag	es)	
Include	a reflective conclu	sion to your report covering:	
– How t	his course helped y	ou know yourself better.	
– Realiz	ations about relation	onships, society, and nature.	
– Any tr	ansformation in yo	our thinking or conduct.	
– Your d	commitment to eth	ical values and aspirations in your pers	onal/professional life.
Format	ting Instructions		
• Font:	Times New Roman		
• Size:	12 pt		
• Line S	pacing: 1.5		
 Margi 	ns: 1 inch on all si	des	
0	h: 25–30 pages (fo		
• Subm	ission: Soft copy (P	DF preferred) or spiral-bound hard cop	y as per instructor's require-
ment			
	1	List of Experiments	
1	Sharing about O	neself	
		tudents with following points: yoursel	
	-	r aspirations from life. How do you e	xpect to fulfil these aspirations
	and live a life of f	ılfilment?	
	-	me: The students start exploring the	-
	each other and v	with the teacher and start appreciating	the need and relevance of the

course.

2	Exploring Human Consciousness		
	Watch and discuss the documentary video "Story of Stuff". It is about		
	the materials economy - its motivation, process and outcome. (Source:		
	https://storyofstuff.org/movies/story-of-stuff)		
	Expected Outcome: The students start finding that right understanding is the basic		
	need of human being; followed by relationship and physical facility. They also start		
	feeling that lack of understanding of human values is the root cause.		
3	Exploring Right Understanding		
	Make a list of your desires. Now for each item on the list, find out what would be		
	necessary to fulfill it. i.e. will it require: (a) Right understanding? (b) Relationship		
	(right feeling)? (c) Physical facility?		
	Expected Outcome: Students start feeling that lack of understanding of human values		
	is the root cause of all problems and the sustained solution could emerge only through		
	understanding human values and value-based living.		
4	Exploring Natural Acceptance		
т	Observation within the faculty of 'Natural Acceptance', based on which you can verify		
	what is right or what is not right for you. Make a list of the problems in your family.		
	For each problem, find out the most significant reason: is it related to lack of right		
	understanding, lack of feelings in relationship or lack of physical facility? Also, find out		
	how much time and effort you have devoted for each in the last one week.		
	Expected Outcome: The students are able to see that self-verification must be based		
	on their natural acceptance. In many cases, their actual living is not in accordance with		
	their natural acceptance. In addition, lack of feeling in relationship is the major cause		
	of problems in their family and with friends.		
5	Exploring the Difference of Needs of Self and Body		
	Take the list of desires you made in Practical 2. Update it if required. Now classify the		
	desires as being related to the need of the Self or need of the Body.		
	Expected Outcome: The students are able to relate their desires to need of the Self		
	and the Body distinctly. They are able to see that the Self and the Body are two distinct		
	realities, and large parts of their desires are related to the need of the Self (and not the		
	Body).		
6	Exploring Sources of Imagination in the Self		
	Recall the times that your body has been ill (in disharmony) in the last 3 years. What		
	steps were taken to restore the harmony of the Body? If you were to take full respon-		
	sibility for your body (i.e., you had the feeling of self-regulation), what kind of daily		
	schedule would you have? Approximately how much time would you allocate for keep-		
	ing your body in good health?		
	Expected Outcome: The students are able to list down activities related to proper		
	upkeep of the Body and practice them in their daily routine. They are also able to		
	appreciate the plants growing in and around the campus, which can be beneficial in		
	maintaining their health and even curing common ailments.		

7	Exploring the Feeling of Trust	
	Show & discuss the video "Right Here Right Now". It is a short film directed by Anand	
	Gandhi about human behavior and its propagation.	
	Part 1: https://www.youtube.com/watch?v=OVAokeqQuFM	
	Part 2: https://www.youtube.com/watch?v=gIYJePEnvUY	
	Expected Outcome: The students are able to see that the natural acceptance (inten-	
	tion) of everyone is to be happy and make others happy! It is the competence is lacking	
	in themselves and in others. They are able to distinguish between reaction and re-	
	sponse, appreciate the need for 100% response in human-human interaction and make	
	effort towards it.	
8	Exploring the Feeling of Respect	
	List out ten or more of your interactions with other people in your family and friends	
	in the last one week. Now analyse these interactions were over-evaluation, under-	
	/otherwise evaluation or right evaluation of the other? In each interaction, were you	
	comfortable within, uncomfortable within or unaware of your state?	
	Expected Outcome: The students are able to see that respect is the right evaluation (of	
	intention and competence). Only right evaluation leads to fulfilment in relationship.	
	Over evaluation leads to ego and under/otherwise evaluation leads to depression.	
9	Exploring Systems to Fulfil Human Goal	
	Assuming that you would like to see your hostel/educational institution/work-	
	place/neighborhood as a model of human society, write down its goal(s) and the system	
	to achieve these goals.	
	Expected Outcome: The students are able to see that as a family, a society, the com-	
	prehensive human goal is naturally acceptable to all.	
	They are able to see that the systems required for their fulfilment include: Educa-	
	tion–Sanskar, Health–Self regulation, Production–Work, Justice–Preservation and Ex-	
	change-Storage. Meaningful participation by every individual, every family, every fam-	
	ily cluster every village, town, city country and the whole world is required in these systems for the human goals to be fulfilled.	
10	Exploring the Four Orders of Nature	
	Watch and discuss the documentary video "An Inconvenient Truth". It is about global	
	climate change presented by Former US Vice President Al Gore. He raises the question	
	"What were you doing when you had the time to do something?" (Source: http://an-	
	inconvenient-truth.com/)	
	Expected Outcome: The students are able to appreciate the interconnectedness, inter-	
	dependence and the relationship of mutual fulfilment existing in nature. They are able	
	to see that they have a natural acceptance to participate in a mutually fulfilling manner	
	in nature.	

11	Exploring Co-existence in Existence
	Observe your Self. Are you in space? Are you getting energy from the body? Is your
	energy dependent on the body? When your body is sick, does your energy to think
	diminish? Are you energized in space? Is the body dictating you? Are you self-organized
	in space?
	Expected Outcome: The students are able to obtain a holistic vision about the exis-
	tence. It is in the form of co-existence, rather than a chaos. Every unit is energized,
	self-organized and is participating with other units in an orderly manner for mutual-
	fulfilment. It is only the human being without right understanding, which is violating
	this underlying co-existence. They are able to appreciate the need to understand the
	co-existence in existence.
12	Exploring Ethical Human Conduct
	Watch and discuss the video "Hiware Bazaar". It is a documentary about a progressive
	village in Maharashtra, India about how good governance, along with the people of the
	village have made significant change in their society.
	(Source: https://www.youtube.com/watch?v=cb0Qvh9BJ0s)
	Expected Outcome: The students are able to clearly visualize the co-relation between
	lack of Human Values and the prevailing problems. They are also able to visualize
	tangible steps and a roadmap for moving in the cherished direction – for a humane
	society.
13	Exploring Humanistic Models in Education
	By careful analysis, identify some important features to make our education more hu-
	manistic. What are the right expectations in terms of the outcome from humanistic
	education? Explain with justification.
	Expected Outcome: The students are able to detail out various social systems essential
	Expected Outcome: The students are able to detail out various social systems essential
	Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular,
	Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then soci-
	Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the
	Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn
14	Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for
14	Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for the tradition, culture etc.
14	 Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for the tradition, culture etc. Exploring Steps of Transition towards Universal Human Order
14	 Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for the tradition, culture etc. Exploring Steps of Transition towards Universal Human Order Suggest ways in which you can use your knowledge of Technology/Engineering/Man-
14	 Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for the tradition, culture etc. Exploring Steps of Transition towards Universal Human Order Suggest ways in which you can use your knowledge of Technology/Engineering/Management/Medicine etc. for universal human order, from your family order to the world
14	 Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for the tradition, culture etc. Exploring Steps of Transition towards Universal Human Order Suggest ways in which you can use your knowledge of Technology/Engineering/Management/Medicine etc. for universal human order, from your family order to the world family order. Evaluate your state before and after the course in terms of
14	 Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for the tradition, culture etc. Exploring Steps of Transition towards Universal Human Order Suggest ways in which you can use your knowledge of Technology/Engineering/Management/Medicine etc. for universal human order, from your family order to the world family order. Evaluate your state before and after the course in terms of (a) Thought (b) Behaviour (c) Work (d) Realization
14	 Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for the tradition, culture etc. Exploring Steps of Transition towards Universal Human Order Suggest ways in which you can use your knowledge of Technology/Engineering/Management/Medicine etc. for universal human order, from your family order to the world family order. Evaluate your state before and after the course in terms of (a) Thought (b) Behaviour (c) Work (d) Realization Expected Outcome: The students are able to visualize an appropriate utilization of
14	 Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for the tradition, culture etc. Exploring Steps of Transition towards Universal Human Order Suggest ways in which you can use your knowledge of Technology/Engineering/Management/Medicine etc. for universal human order, from your family order to the world family order. Evaluate your state before and after the course in terms of (a) Thought (b) Behaviour (c) Work (d) Realization Expected Outcome: The students are able to visualize an appropriate utilization of the knowledge in their respective streams to ensure mutually enriching and sustainable

Learning Resources

Textbooks:

1. *A Foundation Course in Human Values and Professional Ethics*, RR Gaur, R Asthana, GP Bagaria, 3rd revised edition, UHV Publications, 2023, ISBN: 978-81-957703-7-3 (Printed Copy), 978-81-957703-6-6 (e-book)

2. *Teacher's Manual for A Foundation Course in Human Values and Professional Ethics*, RR Gaur, R Asthana, GP Bagaria, 3rd revised edition, UHV Publications, 2023, ISBN: 978-81-957703-5-9 (Printed Copy), 978-81-957703-0-4 (e-Book)

Reference Books:

1. Nagaraj A. (1999). Jeevan Vidya: Ek Parichaya. Jeevan Vidya Prakashan, Amarkantak.

2. Dhar, P. L., Gaur, R. R. (1992). *Science & Humanism, Towards a Unified World View*. India: Commonwealth Publishers.

3. A. Nagaraj, (2003), *Manav Vyavhar Darshan*, Jeevan Vidya Prakashan, Amarkantak.

4. Banerjee, B. P. (2005). Foundations of Ethics in Management. India: Excel Books.

5. Satya, S. (2013). Sah-Astitva Siddhant Evam Samagra Vikas, Part-1 (compiled articles of Dr.

Yashpal Satya). Jeevan Vidya Pratishthan.

CEP-260-ETC: : Community Engagement Project			
	CEP-260-ETC: : Community Engagement Project		
Teaching /schemeCreditsExamination Scheme			
Practical: 04 Hours/Week02Term Work: 25 Marks			

Companion Course :

- 1. CEP is an experiential learning approach that combines education, learning, community development, and meaningful community service.
- 2. Project involves students in community development and service activities and applies the experience to personal and academic development.
- 3. The targeted contribution of college students to the village/local development will benefit the community.
- 4. The college has an opportunity to help students become more socially conscious and responsible while simultaneously becoming a socially conscious organization.

Course Objectives: The course aims to:

- 1. Establish a mutually beneficial relationship between the college and the community
- 2. Opportunities to engage with their local community, fostering empathy, teamwork, and problemsolving skills while contributing positively to their surroundings.
- 3. An understanding of the challenges faced by the local community and the role of engineering in addressing those challenges.
- 4. The ability to apply technical knowledge and skills to design solutions or interventions that create a positive impact on the community.
- 5. The skills to evaluate and critically analyze the outcomes of their engagement activities, deriving actionable insights for sustainable impact

Course Outcomes: Upon successful completion of this course, students will be able to:

- 1. CO1 **Identify** and **Analyze** local community needs and challenges by engaging with stakeholders and evaluating real-world problems.
- 2. CO2- **Design** and **Implement** practical, creative, and context-specific solutions using engineering principles to address community issues.
- 3. CO3 **Reflect** and **Evaluate** the effectiveness of their interventions and articulate lessons learned through reports and presentations.

z Course Contents r Implementation

- A group of 3 to 4 students or a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay/college premise.
- Each group is allotted to a faculty member of the department as a mentor.
- The group of students will be associated with a government official / village authorities /NGOs etc. concerned, allotted by the district administration, during the duration of the project.
- The Community Engagement Project should be different from the regular programmes of NSS/NC-C/Green Club/Hobby Clubs, Special Interests Groups etc
- An activity book has to be maintained by each of the students to record the activities undertaken/involved and will be countersigned by the concerned mentor/HoD.
- Project report shall be submitted by each student/group of students.
- An internal evaluation shall also be conducted by a committee constituted by the HoD. Evaluation to be done based on the active participation of the student and marks could be awarded by the mentor/HoD.
- Students groups can conduct an awareness programme on Health and Hygiene or in Organic Farming or in Fisheries or in advocating prohibition of liquor or about renewable energy, e-waste management or any other activity in an area of their studies and as per his/her aptitude.

Suggestive list of topics under Community Engagement Project

The below lists are not exhaustive and open for HoD's or mentors to add, delete or modify. It is expected that the focus should be on specific local issues in their nearby areas.

The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a student/group of students shall

- Use and/or miss-use of cell phones
- Career orientation of youth
- Water facilities and drinking water availability
- Health and hygiene of the school going students, home makers and old personals
- Health intervention and awareness programmes
- Horticulture
- Herbal and Nutrition
- Traditional and Modern health care methods
- Food habits
- Air /Sound /Water pollution

- Plantation and Soil protection
- Renewable energy and Solar Systems
- Yoga awareness and practice
- Health care awareness programmes and their impact
- Organic farming
- Food adulteration
- Incidence of Diabetes and other chronic diseases
- Blood groups and blood levels
- Chemicals in daily life
- Music and dance
- Women education and empowerment

Project Scope

- Conduct workshops or awareness drives on topics like digital literacy, environmental sustainability, mental health, or career planning for local stakeholders.
- Develop a simple prototype or solution that addresses a real-world problem (e.g., a water-saving device, simple mobile apps, or tools for community use).
- Organize clean-up drives, tree plantations, recycling campaigns, or energy conservation initiatives.
- Promote health through awareness programs on hygiene, nutrition, and exercise.
- Teach basic computer or technical skills to students, staff, or the community

Proposal Submission

CEP Group should Submit a two-page project proposal, preferably prior to the term commencement outlining the following:-

- Title of the project
- Aim, Objective and expected outcome
- Plan of execution (timeline and activities).
- Place of the CEP and involvement of any local authority, NGP
- Required resources (if any).

• Get approval from the designated faculty mentor.

Learning Resources

Text Books:

- 1. Waterman, A. Service-Learning: A Guide to Planning, Implementing, and Assessing Student Projects. Routledge, 1997.
- 2. Beckman, M., and Long, J. F. Community-Based Research: Teaching for Community Impact. Stylus Publishing, 2016.
- 3. Design Thinking for Social Innovation. IDEO Press, 2015.
- 4. Dostilio, L. D., et al. The Community Engagement Professional's Guidebook: A Companion to The Community Engagement Professional in Higher Education. Stylus Publishing, 2017

• MOOC / NPTEL/YouTube Links:

1. NPTEL course: Ecology and Society https://onlinecourses.nptel.ac.in/noc20_hs77/preview

Web Links: -

- 1. UNESCO: Education for Sustainable Development https://www.unesco.org
- 2. EPICS (Engineering Projects in Community Service) https://engineering.purdue.edu/EPICS
- 3. Ashoka: Innovators for the Public https://www.ashoka.org
- 4. Design for Change https://www.dfcworld.com