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Organization of the chapters

The thesis comprises of seven chapters. In chapter - I, we have given a brief history of

Fixed Point Theory and its applications. Also, in this chapter we recall related several

definitions, theorems.

In chapter - II, we have introduced the concept of tripled best proximity point in metric

spaces. As an application to our main result, we prove some tripled best proximity point

theorems in metric spaces which are the generalizations of recent results of Sintunavarat

and Kumam([170]). Some examples and application in integral equations are given to

support our results. Also our result improves the results of Babu and Alemayehu([60])

in metric spaces by giving shorter proof than of Babu and Alemayehu([60]).

In chapter - III, we have developed tripled coincidence point theorems in ordered cone

metric spaces over a solid cone. Our results extend some coupled common fixed point

theorems of Nashine, Kadelburg and Radenovic([68]).

Chapter - IV is divided into three sections:

In section - I, we have introduced the concept of compatible maps in Fuzzy metric spaces

to establish triple coincidence point Theorem. Our result extends the work of Hu([172])

and we have supported our result by a suitable example.

In section - II, we have developed the notion of (f, g)-reciprocal continuity and proved

a common fixed point theorem for a pair of sub-compatible maps by employing a gen-

eralized (ϕ, ψ)-weak contraction condition in fuzzy metric spaces. As an application of
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these results in Fuzzy Metric Spaces, we present a theorem that involves (ϕ, ψ)-weak

cyclic contraction condition.

Section - III deals with a common fixed point theorem in Fuzzy metric spaces. Here

we established the Presič type fixed point theorem([141]) and obtain the uniqueness of

common fixed point for three maps in Fuzzy metric spaces. Also, we have deduced the

main theorem of George([129]) as a corollary to our theorem under some conditions.

In chapter - V, we have proved some periodic point and fixed point theorems for a

rational inequality in complex valued metric spaces. Also, we have given an application

for our main theorem in complex valued metric spaces.

In chapter - VI, we focus on various tools of obtaining Fixed Point such as various kinds

of compatible maps (for example: Compatible Maps of Type(A), Type(B), Type(C),

Type(P), weakly compatible maps, etc.) for details of tools in Fixed Point Theorems

we refer Murthy([124]). We have shown that these pairs satisfy a contractive condition

of integral type in Menger Space using the above tools. Also, we improve the results

of Branciari ([5]), Rhoades ([15]), Kumar, Chugh and Vats([153]). In addition, we have

introduced the notion of Universal weakly compatible maps and proved a fixed

point theorem for a weakly compatible pair of maps.

In chapter - VII, we have introduced a new notion“f -g reciprocal continuity in G-metric

spaces” and proved common fixed point theorem for generalized (ϕ, ψ)-weak contraction

condition. As an application of our result, we prove a theorem for (ϕ, ψ)-weak cyclic

contraction condition.
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Chapter 1

INTRODUCTION

1.1

By fixed point, we shall mean a point which is invariant under any transformation. Let

X be a non-empty set and let T : X → X. If T (x) = x, then x is a fixed point of T.

The importance of Fixed Point Theory lies in solving equations of the type T (x) = 0.

For example, consider an equation x2−6x+ 5 = 0. In this equation we know that x = 1

and x = 5 are the roots of this equation. This equation can be written as x = x2+5
6
. If

we write T (x) = x2+5
6
, then x = 1 and x = 5 are two fixed points of T. Thus, it is easy

to see that the problem of finding the solution of an equation is the same as to find a

fixed point for an equation of the form T (x) = x.

“Fixed point theory and applications”, one of the most interesting and popular branch of

Mathematics, comes under Functional Analysis; it is growing very rapidly in the form of

developing theory and applications. Their applications are widely used in mathematical

economy, mathematical physics, engineering and game theory, etc.

The Modern Fixed Point Theory originated as a consequence of proving the existence

of solutions to a differential equation. In 1844, Cauchy([1]) was the first who gave an

independent proof for the existence and uniqueness of the solution of the differential

equation

dy

dx
= T (x, y),
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where T is continuously differential function. Later Lipschitz([133]) simplified Cauchy’s

proof in 1877, using a condition that is called“Lipschitz condition.” In 1890, Peano ([51])

attempted a deeper result of Cauchy’s theorem by supposing only the continuity of T. In

1930, Caccioppoli([128]) established a fixed point theorem by replacing the contraction

property by convergence property. In 1910, Brouwer([95]) proved a fixed point theorem

in which, if C is a unit ball in Rn and T : C → C be a continuous function, then T has

a fixed point in C.

In 1927, Schauder([78]) extended the above result of Brouwer by assuming C as a

compact convex set in his theorem. Again Schauder([79]) proved in 1930, that any

compact convex nonempty subset of a normed linear space has the fixed point property.

Tychonoff([10]) in 1935, proved that any compact convex nonempty subset of a locally

convex space has the fixed point property. By fixed point property, we shall mean that

every continuous mapping of a topological space X into itself has a fixed point.

Now we recall the classical Banach Fixed Point Theorem (1922) in metric spaces:

Theorem 1.1.1([134]) Let (X, d) be a complete metric space and T be a mapping from

X into X such that

d(T (x), T (y)) ≤ α.d(x, y), where for all x, y ∈ X and α ∈ [0, 1),

if {xn} is a sequence in X such that xn = T n(x0), where x0 ∈ X be an arbitrary point

of X. Then T has a unique fixed point in X.

These have been a number of generalizations of this result by Bryant([158]), Ciric([98]

- [100]), Edelstein([102]), Sehgal ([159] - [160]), Jaggi and Das([41]), etc.

Edelstein([103]) generalized contraction principle due to Banach([134]) in a complete

metric space called contractive mapping principle. Chu and Diaz([142]) and Sehgal([160])

extended this mapping.

Sehgal’s result was further extended and generalized by Guseman([96]), Khazanchi([101]),
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Rhoades and Ray([20]), Iseki([84]) and Sharma([9]).

Rakotch([44]), Browder([47]), Boyd and Wong([42]) replaced Lipschitz constant by some

real valued functions which are less than unity.

After 1960, it was quiet natural for the community to ask a question about fixed point

that “Does there exist a contractive mapping which does not force a mapping T to

be continuous”. It was Kannan([131]) who answered this question affirmatively and

proved a fixed point theorem for a mapping which does not satisfy the condition due to

Banach([134]).

The contraction condition introduced by Kannan([131] is as follows:

there exists a number, 0 ≤ β < 1
2

such that

d(T (x), T (y)) ≤ β[d(x, T (x)) + d(y, T (y))] for all x, y ∈ X

After Kannan’s([131]) contraction condition a variety of contractive conditions were in-

troduced by many researchers. Some of them are Kannan([132]), Reich([150]), Fukshima([64])

, Bianchini([130]), Chatterjee([146]), Zamfirescu([156]), Hardy - Roger([50]), etc in met-

ric and their related spaces. Although their contractive conditions are more general than

of Banach([134]) and Kannan([131]), their corresponding proofs are basically same.

In 1976, Jungck ([52]) gave a generalization of the Banach’s Fixed Point Theorem for a

pair of commuting self maps and one of the function as a continuous map in a complete

metric space (X, d). Perhaps Jungck is the first who studied these three conditions at a

time i.e., Commuting pair of maps, continuous map and containment of ranges in the

history of fixed point theory and applications.

Jungck’s theorem inspired the Fixed Point Theorist as well as many applied discipline

researchers to generalize the contraction and contractive type mappings in many ways

(for eg. see Das and Naik [85], Jungck[52], Chang([143]), Fisher([16] - [19]), Prasad[34]

and jungck[53]).
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Various kinds of compatibility:

Two self maps f and g of a metric space (X, d) are said to be commuting if fg(x) = gf(x)

for all x in X.

Sessa([145]) generalized the concept of commuting mappings and introduced weakly

commuting maps. Self - mappings f and g of a metric space (X, d) are called weakly

commuting pair if

d(fg(x), gf(x)) ≤ d(g(x), f(x))

for all x in X.

Obviously, commuting maps are weakly commuting but the converse is not true.

In 1986, Jungck([53]) introduced the concept of compatible maps in a metric space as a

generalization of commuting maps and weakly commuting mappings. One can observe

that every pair of weakly commuting maps is compatible but the converse is not true.

Refer for examples([53] - [55], [144] etc.).

An equivalent definition of compatible maps is given by Jungck, Murthy and Cho by in-

troducing the concept of compatible maps of type(A) and shown that compatible maps

and compatible maps of type(A) are independent to each other. Refer for details and

examples([56]).

Reader may find a review on such type of pair of maps having the property of non -

commuting pair in metric spaces given by Murthy.([124]).

Tripled Best Proximity Point in metric spaces:

One of the most exciting result is the extension of Banach Fixed Point Theorem in

complete metric space for non - self mapping as such that A to B does not necessarily

have a fixed point where A and B are nonempty closed subsets of a complete metric

space (X, d), with A ∩B = φ.

A point x in A for which d(x, T (x)) = d(A,B) is called a best proximity point of T,

whenever a non - self mapping T has no fixed point, where d(A,B) = inf{d(x, y) :
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x ∈ A, y ∈ B}. A best proximity point represents an optimal solution to the equation

T (x) = x. Since best proximity point reduces to a fixed point, if the underlying map-

ping is assumed to be self - mappings, the Best Proximity Point Theorems are natural

generalizations of the Banach Fixed Point Theorem.

Example 1.1.2 Let X = R be endowed with the metric d(x, y) =| x − y | and let

A = [2, 4] and B = [−4,−2]. Clearly, d(A,B) = 4.

Define T : A→ B such that F (x) = −x. Here we do not a have fixed point.

It is remarkable that Best Approximation Theorem is an approximate solution to the

equation T (x) = x, when T has no solution. Indeed, the well-known best approximation

theorem of Fan ([82]) asserts that if A is a nonempty compact convex subset of a Haus-

dorff locally convex topological vector space B, and T : A→ B is a continuous mapping,

then there exists an element x satisfying the condition d(x, T (x)) = infy∈A d(T (x), y).

Later, several researchers such as Reich [151], Prolla ([77], Sehgal and Singh [161] -

[162], Vetrivel, Veeramani and Bhattacharyya [166], Wlodarczyk and Plebaniak ([88]-

[90]), Eldred and Veeramani [2], Mongkolkeha and Kumam [29] and Sadiq Basha and

Veeramani [138]-[140], Sadiq Basha [137]) obtained extensions of Fan’s theorem in many

directions.

In this context, we mildly modify the concept of tripled fixed point introduced by Brinde

and Borcut([157]). We introduce the following notion of tripled best proximity point.

Definition 1.1.3 Let A and B be nonempty subsets of a metric space (X, d) and

F : A × A × A → B be a mapping than an element (x, y, z) ∈ A × A × A is called a

tripled best proximity point of F, if

d(x, F (x, y, z)) = d(y, F (y, z, x)) = d(z, F (z, x, y)) = d(A,B).

where d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Triplet coincidence point theorem in ordered cone metric spaces :

5



The concept of cone metric spaces was introduced by Huang and Zhang([97]) which is

the generalization of a metric space. In this they have replaced d : X × X → R by

d : X ×X → E, where E is the set of real Banach Space.

In 2004, the concept of partially ordered metric space(POMS) was introduced by Ran

and Reurings ([20] ). Guo and Lakshmikantham ([37]) studied the concept of coupled

fixed points in POMS. Later, Bhaskar and Lakshmikantham ([154]) studied monotone

property in POMS and supported this by providing an application to the existence of

periodic boundary value problems. Recently, Karapinar([46]) proved coupled fixed point

theorems for nonlinear contractions in ordered cone metric spaces over normal cones

without regularity. He assumed the continuity and commutativity of both mappings in

complete space. Shatanawi ([167]) proved coupled coincidence and coupled fixed point

theorems in cone metric spaces which were not necessarily normal. Some results on this

are due to Sabetghadam ([48]), Ding and Li ([66]), and Aydi, Samet and Vetro([67]).

According to Borcut and Berinde ([157]), we shall furnish the following definition(1.1.4

and 1.1.6):

Consider partial ordering on X ×X ×X in the following manner:

for (x, y, z), (u, v, w) ∈ X ×X ×X, (u, v, w) ≤ (x, y, z)⇔ x ≥ u, y ≤ v, z ≥ w.

Definition 1.1.4 Let (X,≤) be a partially ordered set and F : X × X × X → X

and g : X → X. The mapping F is said to have mixed g - monotone property if F is

monotone g - non-decreasing in x and z, is monotone g - non-increasing in y i.e., for

any x, y, z ∈ X

x1, x2 ∈ X, g(x1) ≤ g(x2)⇒ F (x1, y, z) ≤ F (x2, y, z) (1.1.1)

y1, y2 ∈ X, g(y1) ≤ g(y2)⇒ F (x, y1, z) ≥ F (x, y2, z) (1.1.2)

z1, z2 ∈ X, g(z1) ≤ g(z2)⇒ F (x, y, z1) ≤ F (x, y, z2) (1.1.3)

6



hold.

Remark 1.1.5 g - monotone property on X×X is introduced by Lakshmikantham and

Čirič([163]).

Definition 1.1.6 Let (X, d,�) be a nonempty ordered cone metric space and F :

X ×X ×X → X, g : X → X. An element (x, y, z) ∈ X ×X ×X is called:

(T1) a tripled coincidence point of mappings F and g if F (x, y, z) = g(x), F (y, x, y) =

g(y), F (z, y, x) = g(z).

(T2) a tripled fixed point of mapping F if F (x, y, z) = g(x) = x, F (y, x, y) = g(y) = y

and F (z, y, x) = g(z) = z.

Triplet coincidence point theorem in Fuzzy metric spaces:

Zhu and Xiao([174]) and Hu([172]) gave a coupled fixed point theorem for contractions

in fuzzy metric spaces, and Fang([83]) proved some common fixed point theorems under

φ-contractions for compatible and weakly compatible mappings on Menger probabilistic

metric spaces.Very recently, the concept of tripled fixed point has been introduced by

Berinde and Borcut ([157]). In their paper, some new tripled fixed point theorems are

obtained using the mixed g-monotone mapping. Their results generalize and extend the

results of Bhaskar and Lakshmikantham([154]).

Now we furnish here some definitions for our theorems:

Definition 1.1.7 An element (x, y, z) ∈ X×X×X is called a tripled fixed point of the

map F : X×X×X → X and g : X → X if F (x, y, z) = g(x) = x, F (y, x, z) = g(y) = y

and F (z, y, x) = g(z) = z.

Definition 1.1.8 An element (x, y, z) ∈ X×X×X is called a tripled coincidence point

of the maps F : X ×X ×X → X and g : X → X if F (x, y, z) = g(x), F (y, x, z) = g(y)

and F (z, y, x) = g(z).

Presič type mapping and Common fixed point theorem in Fuzzy metric

spaces:

7



In 1965, Presič([141]) extended Banach’s contraction mapping principle to operators

defined on product spaces which follows:

Theorem 1.1.9 Let (X, d) be a metric space, k a positive integer, Xk ≡ product ofX, k−

times and T : Xk → X be a mapping satisfying the following condition:

d(T (x1, x2, · · · , xk), T (x2, x3, · · · , xk+1)) ≤ q1.d(x1, x2)+q2.d(x2, x3)+· · ·+qk.d(xk, xk+1)

where x1, x2, · · · , xk+1 are arbitrary elements in X and q1, q2, · · · , qk are non-negative

constants such that q1 + q2 + · · · + qk < 1. Then, there exists some x ∈ X such

that x = T (x, x, · · · , x). Moreover, if x1, x2, · · · , xk are arbitrary points in X and for

n ∈ N, xn+k = T (xn, xn+1, · · · , xn+k−1), then the sequence {xn} is convergent and

limxn = T (limxn, limxn, · · · , limxn).

Note that for k = 1 the above theorem reduces to the well-known Banach Contraction

Principle.

In this section, we have proved a common fixed point theorem of Presič type mapping

in the setting of Fuzzy metric spaces which extends the results of George ([129]).

Common fixed point theorems in complex valued metric space:

This study has been already done by many mathematicians and we have another view

point to revisit the study of complex valued metric spaces. The study of new discov-

eries in mathematics and their basic properties are always favorite topics of interest

among the mathematical research community. In this context, the concept of 2-metric

spaces was introduced initially by Gähler([135]) in his series of papers and he gave a

thought on dimensions of ordinary metric spaces. Since the metric for a pair of points

is non-negative real, (i.e. [0,∞)). The concept of probabilistic metric spaces in which

the probabilistic distance between two points is considered has given a new height and

interest to the study to know more about stars in the universe. In a similar way, the

study of fuzzy metric spaces was initially done by Grabiec([105]) and Erceg([104]) in

8



which the degree of agreement and disagreement were considered.

So far, the study was done around the real numbers for e.g. Metric spaces, 2-Metric

spaces, Normed linear spaces, Fuzzy metric spaces, Probabilistic metric spaces, etc. Let

X be a non-empty set and let d : X ×X → R, ||.|| : N → R, d : X ×X ×X → R

and M(x, y, t) : X×X×[0,∞]→ [0, 1], F : X×X −→ [0, 1]. It was quiet natural to ask

“What happens if we replace R by some other sets which are not necessarily completely

ordered sets like R?” and this was answered by a few researchers by introducing the

cone metric spaces, the partially ordered metric spaces, the modular metric spaces and

very recently, the complex valued metric spaces, respectively by Huang and Zhang([97]),

Matthew ([136]), Chistyakov([165]), Azam, Fisher and Khan ([4]).

Here, first we shall introduce the concept of complex valued metric space by modifying

the same introduced initially by Azam, Fisher and Khan([4]). As an application of these

concepts, we shall construct a theorem and its application in integral equations.

Common fixed point theorems in Menger spaces:

In metric spaces d(x, y) stands for distance between two points x and y. If the exact

distance is not known, then the concept of probable distance comes. The concept of

a Probabilistic Metric Space (in short PM-space) is used to deal with such situations.

The notion of Probabilistic Metric Space (or Statistical Metric Space) was initially in-

troduced by Menger([87]) in 1944, which is a generalization of Metric spaces. The idea

in Probabilistic Metric space is associated with distribution functions with a pair of

points, say (p, q), denoted by F (p, q; t) where t > 0 and interpreted this function as

the probability that distance between p and q is less than t. The study of PM-spaces

was expanded rapidly with the pioneering works of Schweizer-Sklar([76], [70], [71], [72],

[164], etc).

Here, we establish a fixed point theorem for integral type contraction condition in the

9



probabilistic metric space for a pair of compatible maps of type (A) ( or compatible of

type (P) or weak compatible of type (A)) maps.

Generalized (ϕ, ψ)-Weak Contractions in G - metric spaces:

Now we recall the following from the History of Fixed Point Theory and Applications:

Boyd and Wong in 1969 ([42]) introduced such type of functions to generalized Con-

traction Condition due to Banach:

Theorem 1.1.10 Let (X, d) be a complete metric space and ψ : [0,∞) → [0,∞) be

upper semi continuous from the right such that 0 ≤ ψ(t) < t for all t > 0. If T : X → X

satisfies

d(T (x), T (y)) ≤ ψ(d(x, y)) for all x, y ∈ X,

then it has a unique fixed point x ∈ X and {T n(x)} converges to x for all x ∈ X.

Later, Chang([143]) generalizing and unifying fixed point theorems of Jungck([52]), Das

and Naik([85]), etc.

Theorem 1.1.11 Let (X, d) be a complete metric space, a self - mapping f on X such

that for some positive integer m, fm is continuous. Let {gi}∞i=1 : fm−1(X) → X be a

sequence of mappings such that

gi(f
m−1(X)) ⊂ fm(X), i = 1, 2, · · · ,

and suppose gi commutes with f, i = 1, 2, · · · . Further, suppose there exists a sequence of

positive integers {mi}∞i=1 such that for any positive integers i, j and any x, y ∈ fm−1(X)

the following holds

d(gmi
i (x), g

mj

j (y))

≤ A(max{d(f(x), f(y)), d(f(x), gmi
i (x)), d(f(y), g

mj

j (y)),

d(f(y), gmi
i (x)), d(f(x), g

mj

j (y))}),
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where the function A satisfies the following conditions (A1), (A2) or (A1), (A3) :

(A1)A : [0,∞)→ [0,∞) is nondecreasing and right continuous.

(A2) For any real number q ∈ [0,∞) there exists a suitable real number t(q) ∈ [0,∞)

such that

(a) t(q) is the upper bound of the set

{t ∈ [0,∞) : t ≤ q + A(t)},

(b) limn→∞A
n(t(q)) = 0.

(A3) For every t > 0, A(t) < t and

limt→∞(t− A(t)) =∞.

Then f and gi, i = 1, 2, · · · have a unique common fixed point f(y∗), where y∗ ∈ X is

the limit of the sequence {yn}∞n=1 defined as yn = gmn
n (xn) = f(xn+1), n = 1, 2, · · · .

Alber and Guerre-Delabriere ([173]) suggested a generalization of the Banach contrac-

tion mapping principle by introducing the concept of weak contraction in Hilbert spaces.

Later, Rhoades ([14]) realized that this result of Hilbert spaces is valid in complete met-

ric spaces also.

Rhoades ([14]) proved the following theorem and the contractive condition introduced

called as weak contraction:

Definition 1.1.12 Let X be a metric space. A mapping T : X → X is called contrac-

tive if and only if

d(T (x), T (y)) ≤ d(x, y)− ϕ(d(x, y)),

∀ x, y ∈ X, where ϕ is an altering distance function.

In 1984, Khan, Swaleh and Sessa ([116]) have introduced the concept of an altering

distance function in metric spaces in the following manner:

Definition 1.1.13 A function ϕ : [0,∞) → [0,∞) is an altering distance function if

ϕ(t) is monotone non-decreasing, continuous and ϕ(t) = 0 if and only if t = 0.

11



Theorem 1.1.14 [[14], Theorem 2] Let (X, d) be a complete metric space. If T : X → X

is a weakly contractive mapping, then T has a unique fixed point.

Dutta and Choudhury([122]) further generalized the weak contraction condition of

Rhoades ([14] in particular Theorem 2).

Theorem 1.1.15 Let (X, d) be a complete metric space and T : X → X satisfying

ψ(d(T (x), T (y)) ≤ ψ(d(x, y))− ϕ(d(x, y)),

∀ x, y ∈ X where ψ and ϕ are altering distance function. Then T has a unique fixed

point.

Many results are available using (ϕ, ψ)-Weak Contractions in metric spaces as well as in

its related spaces. One can see some of them in (Zhang and Song ([127]), Dorić ([35])).

Here, we deal with such type of contractions having control functions. In fact, all

contractions are the generalizations of Banach by including the distance function within

the real valued function. We have proved some fixed point theorems in G-metric space

by using (φ, ψ) - contraction condition.
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Chapter 2
TRIPLED BEST PROXIMITY POINTS AND COMMON
FIXED POINTS IN METRIC SPACES

2.1

Present chapter has been divided into two section. In this chapter, we shall prove two

types of theorems in metric spaces.

1. In section - I, we shall prove tripled best proximity point theorems supported by

examples and at the end we shall give an application in integral equations of our result.

2. In section - II, we improve the results of Babu and Alemayehu ([60]) in metric spaces

by giving shorter proof than of Babu and Alemayehu ([60]).

Throughout this section N denotes the set of all positive integers, R denotes the set of

all real numbers and d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}, where A ∩B = φ.

2.2 Section I

We need the following important definitions for proving our main theorem.

Definition 2.2.1[155] Let A and B be nonempty subsets of a metric space (X, d). Then

(A,B) is said to satisfy the property UC if the following holds:

if {xn} and {zn} are sequences inA and {yn} is a sequence inB such that limn→∞ d(xn, yn) =

d(A,B) and limn→∞ d(zn, yn) = d(A,B), then limn→∞ d(xn, zn) = 0.

∗ Published in “Fixed points of nonlinear contraction,” Advances in Fixed Point Theory, 3 (2013),
No. 4, 600-607ISSN: 1927-6303, Available online at http://scik.org
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Definition 2.2.2[170] Let A and B be nonempty subsets of a metric space (X, d). The

ordered pair (A,B) satisfies the property UC∗, if (A,B) has the property UC and the

following condition hold:

if {xn} and {zn} are sequences in A and {yn} is a sequence in B satisfying:

(i) d(zn, yn)→ d(A,B) as n→∞,

(ii) for every ε > 0 there exists N ∈ N such that d(xm, yn) ≤ d(A,B) + ε, for all

m > n ≥ N,

then, for every ε > 0 there exists N1 ∈ N such that d(xm, zn) ≤ d(A,B) + ε for all

m > n ≥ N1.

Definition 2.2.3[157] Let A be a nonempty subset of a set POMS X and F : A×A×

A → A be a mapping. An element (x, y, z) ∈ A × A × A is called a tripled fixed point

of F if

x = F (x, y, z), y = F (y, z, y) and z = F (z, x, y).

In view of the above concepts, now we shall introduce the notion of tripled best prox-

imity point in metric spaces by modifying the notion of the same introduced by Brinde

and Borcut([157]) in partially ordered metric spaces.

Definition 2.2.4 Let A and B be nonempty subsets of a metric space (X, d) and

F : A×A×A→ B be a mapping. An element (x, y, z) ∈ A×A×A is said to be tripled

best proximity point of F if

d(x, F (x, y, z)) = d(y, F (y, z, x)) = d(z, F (z, x, y)) = d(A,B).

It is easy to see that, if A = B in above definition, then a tripled best proximity point

reduces to a tripled fixed point.
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Now, we are going to introduce the notion of a cyclic contraction for a pair of mappings

in metric spaces by modifying slightly the notion which was initially introduced by

Eldred and Veeramani([2]).

Definition 2.2.5 Let A and B be nonempty subsets of a metric space (X, d). The maps

F : A × A × A → B and G : B × B × B → A is said to satisfy cyclic contraction for

some α ∈ [0, 1);

d(F (x, y, z), G(u, v, w)) ≤ α

3
[d(x, u) + d(y, v) + d(z, w)] + (1− α)d(A,B),

for all (x, y, z) ∈ A× A× A and (u, v, w) ∈ B ×B ×B.

Remark 2.2.6 If (F,G) is a cyclic contraction, then (G,F ) is also a cyclic contraction.

Example 2.2.7 Let X = R endowed with the metric d(x, y) =| x−y | and let A = [2, 4]

and B = [−4,−2]. Clearly, d(A,B) = 4.

Define F : A× A× A→ B and G : B ×B ×B → A by

F (x, y, z) =
−x− y − z − 6

6
and G(u, v, w) =

−u− v − w + 6

6
.

Fix α = 1
2

for arbitrary (x, y, z) ∈ A× A× A and (u, v, w) ∈ B ×B ×B, we get

d(F (x, y, z), G(u, v, w)) =| −x−y−z−6
6

− −u−v−w+6
6

|

≤ |x−u|+|y−v|+|z−w|
6

+ 2

= α
3
[d(x, u) + d(y, v) + d(z, w)] + (1− α)d(A,B).

This implies that (F,G) is a cyclic contraction pair with α = 1
2
.
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Example 2.2.8 Let X = R2 endowed with the metric given by

d((x, y, z), (u, v, w)) = max{| x− u |, | y − v |, | z − w |}

and let A = {(x, 0) : 0 ≤ x ≤ 1} and B = {(x, 1) : 0 ≤ x ≤ 1}. Clearly, d(A,B) = 1.

Define F : A× A× A→ B and G : B ×B ×B → A by

F ((x, 0), (y, 0), (z, 0)) = (
x+ y + z

3
, 1) and G((u, 1), (v, 1), (w, 1)) = (

u+ v + w

3
, 0).

For arbitrary x, y, z, u, v, w ∈ [0, 1], we get

d(F ((x, 0), (y, 0), (z, 0)), G((u, 1), (v, 1), (w, 1))) = d((x+y+z
3

, 1), (u+v+w
3

, 0))

= 1.

For all α > 0, we have

α
3
[d((x, 0), (u, 1)), d((y, 0), (v, 1)), d((z, 0), (w, 1))] + (1− α)d(A,B)

= α
3
[max{| x− u |, 1}+ max{| y − v |, 1}

+ max{| z − w |, 1}] + (1− α)d(A,B)

= α
3
× 3 + (1− α)

= 1.

This implies that (F,G) is a cyclic contraction.

Before presenting our main Theorem, we need to prove the following lemmas:

Lemma 2.2.9 Let A and B be nonempty subsets of a metric space (X, d). A pair of

maps F and G is satisfying cyclic contraction condition, if

x2n+1 = F (x2n, y2n, z2n), y2n+1 = F (y2n, z2n, x2n), z2n+1 = F (z2n, x2n, y2n),
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for all n ∈ N ∪ {0},

and

x2n+2 = G(x2n+1, y2n+1, z2n+1), y2n+2 = G(y2n+1, z2n+1, x2n+1), z2n+2 = G(z2n+1, x2n+1, y2n+1)

for all n ∈ N ∪ {0},

then

limn→∞ d(x2n, x2n+1) = d(A,B), limn→∞ d(x2n+1, x2n+2) = d(A,B),

limn→∞ d(y2n, y2n+1) = d(A,B), limn→∞ d(y2n+1, y2n+2) = d(A,B),

limn→∞ d(z2n, z2n+1) = d(A,B), limn→∞ d(z2n+1, z2n+2) = d(A,B).

Proof. For each n ∈ N ∪ {0}, we have

d(x2n, x2n+1) = d(x2n, F (x2n, y2n, z2n))

= d(G(x2n−1, y2n−1, z2n−1), F (G(x2n−1, y2n−1, z2n−1), G(y2n−1, z2n−1, x2n−1),

G(z2n−1, x2n−1, y2n−1)))

≤ α
3
[d(x2n−1, G(x2n−1, y2n−1, z2n−1)) + d(y2n−1, G(y2n−1, z2n−1, x2n−1))

+d(z2n−1, G(z2n−1, x2n−1, y2n−1))] + (1− α)d(A,B)

= α
3
[d(F (x2n−2, y2n−2, z2n−2), G(F (x2n−2, y2n−2, z2n−2), F (y2n−2, z2n−2, x2n−2),

F (z2n−2, x2n−2, y2n−2)) +d(F (y2n−2, z2n−2, x2n−2), G(F (y2n−2, z2n−2, x2n−2),

F (z2n−2, x2n−2, y2n−2), F (x2n−2, y2n−2, z2n−2)) + d(F (z2n−2, x2n−2, y2n−2),

G(F (z2n−2, x2n−2, y2n−2), F (x2n−2, y2n−2, z2n−2), F (y2n−2, z2n−2, x2n−2))]

+(1− α)d(A,B)

≤ α
3
{α
3
[d(x2n−2, F (x2n−2, y2n−2, z2n−2)) + d(y2n−2, F (y2n−2, z2n−2, x2n−2))
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+d(z2n−2, F (z2n−2, x2n−2, y2n−2)) + (1− α)d(A,B)]

+α
3
[d(y2n−2, F (y2n−2, z2n−2, x2n−2)) + d(z2n−2, F (z2n−2, x2n−2, y2n−2))

+d(x2n−2, F (x2n−2, y2n−2, z2n−2)) + (1− α)d(A,B)]

+α
3
[d(z2n−2, F (z2n−2, x2n−2, y2n−2)) + d(x2n−2, F (x2n−2, y2n−2, z2n−2))

+d(y2n−2, F (y2n−2, z2n−2, x2n−2)) + (1− α)d(A,B)]

+(1− α)d(A,B)}

= α2

3
[d(x2n−2, F (x2n−2, y2n−2, z2n−2)) + d(y2n−2, F (y2n−2, z2n−2, x2n−2))

+d(z2n−2, F (z2n−2, x2n−2, y2n−2))] + (1− α2)d(A,B).

By induction, we have

d(x2n, x2n+1) ≤ α2n

3
[d(x0, F (x0, y0, z0)) + d(y0, F (y0, z0, x0)) + d(z0, F (z0, x0, y0))]

+(1− α2n)d(A,B),

and on taking n→∞, we get d(x2n, x2n+1)→ d(A,B).

Arguing as above for each n ∈ N ∪ {0}, we have

d(x2n+1, x2n+2) = d(x2n+1, G(x2n+1, y2n+1, z2n+1))

= d(F (x2n, y2n, z2n), G(F (x2n, y2n, z2n), F (y2n, z2n, x2n), G(z2n, x2n, y2n)))

≤ α
3
[d(x2n, F (x2n, y2n, z2n))+d(y2n, F (y2n, z2n, x2n))+d(z2n, F (z2n, x2n, y2n))]

+(1− α)d(A,B)

= α
3
[d(G(x2n−1, y2n−1, z2n−1), F (G(x2n−1, y2n−1, z2n−1), G(y2n−1, z2n−1, x2n−1),

G(z2n−1, x2n−1, y2n−1)) + d(G(y2n−1, z2n−1, x2n−1), F (G(y2n−1, z2n−1, x2n−1),
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G(z2n−1, x2n−1, y2n−1), G(x2n−1, y2n−1, z2n−1))] + d(G(z2n−1, x2n−1, y2n−1),

F (G(z2n−1, x2n−1, y2n−1), G(x2n−1, y2n−1, z2n−1), G(y2n−1, z2n−1, x2n−1))

+(1− α)d(A,B)

≤ α
3
{α
3
[d(x2n−1, G(x2n−1, y2n−1, z2n−1)) + d(y2n−2, G(y2n−1, z2n−1, x2n−1))

+d(z2n−1, F (z2n−1, x2n−1, y2n−1)) + (1− α)d(A,B)]

+α
3
[d(y2n−1, G(y2n−1, z2n−1, x2n−1)) + d(z2n−1, G(z2n−1, x2n−1, y2n−1))

+d(x2n−1, G(x2n−1, y2n−1, z2n−1)) + (1− α)d(A,B)]

+α
3
[d(z2n−1, G(z2n−1, x2n−1, y2n−1)) + d(x2n−1, G(x2n−1, y2n−1, z2n−1))

+d(y2n−1, G(y2n−1, z2n−1, x2n−1)) + (1− α)d(A,B)] + (1− α)d(A,B)}

= α2

3
[d(x2n−1, G(x2n−1, y2n−1, z2n−1)) + d(y2n−1, G(y2n−1, z2n−1, x2n−1))

+d(z2n−1, G(z2n−1, x2n−1, y2n−1))] + (1− α2)d(A,B).

By induction, we get

d(x2n+1, x2n+2) ≤ α2n

3
[d(x1, F (x1, y1, z1)) + d(y1, F (y1, z1, x1)) + d(z1, F (z1, x1, y1))]

+(1− α2n)d(A,B),

and on taking n→∞, we obtain d(x2n+1, x2n+2)→ d(A,B).

Similar arguing for {y2n}, {y2n+1}, {z2n} and {z2n+1}, we will have d(y2n, y2n+1) →

d(A,B), d(y2n+1, y2n+2) → d(A,B), d(z2n, z2n+1) → d(A,B) and d(z2n+1, z2n+2) →

d(A,B) respectively.

Lemma 2.2.10 Let A and B be nonempty subsets of a metric space (X, d) such that

(A,B) and (B,A) satisfy the property UC and a pair of maps F and G satisfying cyclic
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contraction condition, if

x2n+1 = F (x2n, y2n, z2n), y2n+1 = F (y2n, z2n, x2n), z2n+1 = F (z2n, x2n, y2n),

for all n ∈ N ∪ {0},

and

x2n+2 = G(x2n+1, y2n+1, z2n+1), y2n+2 = G(y2n+1, z2n+1, x2n+1), z2n+2 = G(z2n+1, x2n+1, y2n+1),

for all n ∈ N ∪ {0},

then for ε > 0, there exists a positive integer N0 such that for all m > n ≥ N0,

1

3
[d(x2m, x2n+1) + d(y2m, y2n+1) + d(z2m, z2n+1)] < d(A,B) + ε. (2.2.1)

Proof. By Lemma 2.2.9, we have d(x2n, x2n+1) → d(A,B) and d(x2n+1, x2n+2) →

d(A,B) as n→∞. Since (A,B) satisfies the property UC, we get d(x2n, x2n+2)→ 0 as

n→∞. Similarly d(y2n, y2n+2)→ 0 and d(z2n, z2n+2)→ 0 as n→∞. Since (B,A) satis-

fies the property UC, we get d(x2n+1, x2n+3)→ 0, d(y2n+1, y2n+3) and d(z2n+1, z2n+3)→ 0

as n→∞.

If possible suppose that (2.2.1) does not hold. Then there exists ε′ > 0 such that for all

k ∈ N, there exist mk > nk ≥ k satisfying

1
3
[d(x2mk

, x2nk+1) + d(y2mk
, y2nk+1) + d(z2mk

, z2nk+1)] ≥ d(A,B) + ε′

and

1
3
[d(x2mk−2, x2nk+1) + d(y2mk−2, y2nk+1) + d(z2mk−2, z2nk+1)] < d(A,B) + ε′.

Therefore, we get

d(A,B) + ε′ ≤ 1
3
[d(x2mk

, x2nk+1) + d(y2mk
, y2nk+1) + d(z2mk

, z2nk+1)]

≤ 1
3
[d(x2mk

, x2mk−2) + d(x2mk−2, x2nk+1) + d(y2mk
, y2mk−2)

+d(y2mk−2, y2nk+1) + d(z2mk
, z2mk−2) + d(z2mk−2, z2nk+1)]

< 1
3
[d(x2mk

, x2mk−2) + d(y2mk
, y2mk−2) + d(z2mk

, z2mk−2)] + d(A,B) + ε′.
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Letting k →∞, we obtain

1
3
[d(x2mk

, x2nk+1) + d(y2mk
, y2nk+1) + d(z2mk

, z2nk+1)]→ d(A,B) + ε′.

By using the triangle inequality we get

1
3
[d(x2mk

, x2nk+1) + d(y2mk
, y2nk+1) + d(z2mk

, z2nk+1)]

≤ 1
3
[d(x2mk

, x2mk+2)+d(x2mk+2, x2mk+3)+d(x2mk+3, x2nk+1)+d(y2mk
, y2mk+2)

+d(y2mk+2, y2mk+3)+d(y2mk+3, y2nk+1)+d(z2mk
, z2mk+2)+d(z2mk+2, z2mk+3)

+d(z2mk+3, z2nk+1)]

= 1
3
[d(x2mk

, x2mk+2)+d(G(x2mk+1, y2mk+1, z2mk+1), F (x2mk+2, y2mk+2, z2mk+2))

+d(x2mk+3, x2nk+1) + d(y2mk
, y2mk+2) + d(G(y2mk+1, z2mk+1, x2mk+1),

F (y2mk+2, z2mk+2, x2mk+2)) + d(y2mk+3, y2nk+1) + d(z2mk
, z2mk+2)

+d(G(z2mk+1, x2mk+1, y2mk+1), F (z2mk+2, x2mk+2, y2mk+2))+d(z2mk+3, z2nk+1)]

≤ 1
3
{d(x2mk

, x2mk+2)+
α
3
[d(x2mk+1, x2mk+2)+d(y2mk+1, y2mk+2)+d(z2mk+1, z2mk+2)]

+(1− α)d(A,B) + d(x2mk+3, x2nk+1) + d(y2mk
, y2mk+2)

+α
3
[d(y2mk+1, y2mk+2) + d(z2mk+1, z2mk+2) + d(x2mk+1, x2mk+2)]

+(1−α)d(A,B)+d(y2mk+3, y2mk+1)+d(z2mk
, z2mk+2)+ α

3
[d(z2mk+1, z2mk+2)

+d(x2mk+1, x2mk+2)+d(y2mk+1, y2mk+2)]+(1−α)d(A,B)+d(z2mk+3, z2nk+1)}

= 1
3
[d(x2mk

, x2mk+2) + d(x2mk+3, x2nk+1) + d(y2mk
, y2mk+2)

+d(y2mk+3, y2nk+1) + d(z2mk
, z2mk+2) + d(z2mk+3, z2nk+1)]

+α
3
[d(x2mk+1, x2mk+2)+d(y2mk+1, y2mk+2)+d(z2mk+1, z2mk+2)]+(1−α)d(A,B)
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= 1
3
[d(x2mk

, x2mk+2)+d(x2mk+3, x2nk+1)+d(y2mk
, y2mk+2)+d(y2mk+3, y2nk+1)

+d(z2mk
, z2mk+2) + d(z2mk+3, z2nk+1)]

+α
3
[d(F (x2mk

, y2mk
, z2mk

), G(x2mk+1, y2mk+1, z2mk+1))

+d(F (y2mk
, z2mk

, x2mk
), G(y2mk+1, z2mk+1, x2mk+1))

+d(F (z2mk
, x2mk

, y2mk
), G(z2mk+1, x2mk+1, y2mk+1))] + (1− α)d(A,B)

≤ 1
3
[d(x2mk

, x2mk+2) + d(x2mk+3, x2nk+1) + d(y2mk
, y2mk+2)

+d(y2mk+3, y2nk+1) + d(z2mk
, z2mk+2) + d(z2mk+3, z2nk+1)]

+α
3
{α
3
[d(x2mk

, x2mk+1) +d(y2mk
, y2mk+1) +d(z2mk

, z2mk+1)] + (1−α)d(A,B)

+α
3
[d(y2mk

, y2mk+1) + d(z2mk
, z2mk+1) + d(x2mk

, x2mk+1)] + (1− α)d(A,B)

+α
3
[d(z2mk

, z2mk+1) + d(x2mk
, x2mk+1) + d(y2mk

, y2mk+1)] + (1− α)d(A,B)}

+(1− α)d(A,B)

= 1
3
[d(x2mk

, x2mk+2)+d(x2mk+3, x2nk+1)+d(y2mk
, y2mk+2)+d(y2mk+3, y2nk+1)

+d(z2mk
, z2mk+2)+d(z2mk+3, z2nk+1)]+

α2

3
[d(x2mk

, x2mk+1)+d(y2mk
, y2mk+1)

+d(z2mk
, z2mk+1)] + (1− α2)d(A,B).

By taking k →∞, we get

d(A,B) + ε′ ≤ α2[d(A,B) + ε′] + (1− α2)d(A,B)

= d(A,B) + α2ε′,

which is a contradiction and so, we conclude that (2.2.1) holds true.
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Lemma 2.2.11 Let A and B be nonempty subsets of a metric space (X, d) such that

(A,B) and (B,A) satisfying the property UC∗ and a pair of maps F and G satisfying

cyclic contraction condition, if

x2n+1 = F (x2n, y2n, z2n), y2n+1 = F (y2n, z2n, x2n), z2n+1 = F (z2n, x2n, y2n),

for all n ∈ N ∪ {0},

and

x2n+2 = G(x2n+1, y2n+1, z2n+1), y2n+2 = G(y2n+1, z2n+1, x2n+1), z2n+2 = G(z2n+1, x2n+1, y2n+1),

for all n ∈ N ∪ {0},

then {x2n}, {x2n+1}, {y2n}, {y2n+1}, {z2n} and {z2n+1} are Cauchy sequences.

Proof. By Lemma 2.2.9, we have d(x2n, x2n+1) → d(A,B) and d(x2n+1, x2n+2) →

d(A,B) as n → ∞. Since (A,B) satisfies the property UC∗, we get d(x2n, x2n+2) → 0

as n → ∞. Also, since (B,A) satisfies the property UC∗, we have d(x2n+1, x2n+3) → 0

as n→∞. We now show that for every ε > 0 there exists N ∈ N such that

d(x2m, x2n+1) ≤ d(A,B) + ε, (2.2.2)

for all m > n ≥ N.

Suppose that (2.2.2) does not hold, then there is ε > 0 such that for all k ∈ N there

exist mk > nk ≥ k with

d(x2mk
, x2nk+1) > d(A,B) + ε. (2.2.3)

Now we have

d(A,B) + ε < d(x2mk
, x2nk+1)

≤ d(x2mk
, x2nk−1) + d(x2nk−1, x2nk+1)

≤ d(A,B) + ε+ d(x2nk−1, x2nk+1).
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Taking k →∞, we get d(x2mk
, x2nk+1)→ d(A,B) + ε.

Next, by Lemma 2.2.10, there exists N ∈ N such that

1

3
[d(x2mk

, x2nk+1) + d(y2mk
, y2nk+1) + d(z2mk

, z2nk+1)] < d(A,B) + ε,

for all m > n ≥ N. By using the triangle inequality we get

d(x2mk
, x2nk+1) ≤ d(x2mk

, x2mk+2) + d(x2mk+2, x2nk+3) + d(x2nk+3, x2nk+1)

= d(x2mk
, x2mk+2)+d(G(x2mk+1, y2mk+1, z2mk+1), F (x2nk+2, y2nk+2, z2nk+2))

+d(x2nk+3, x2nk+1)

≤ d(x2mk
, x2mk+2) + α

3
[d(x2mk+1, x2nk+2) + d(y2mk+1, y2nk+2)

+d(z2mk+1, z2nk+2)] + d(x2nk+3, x2nk+1) + (1− α)d(A,B)

= α
3
[d(F (x2mk

, y2mk
, z2mk

), G(x2nk+1, y2nk+1, z2nk+1))

+d(F (y2mk
, z2mk

, x2mk
), G(y2nk+1, z2nk+1, x2nk+1))

+d(F (z2mk
, x2mk

, y2mk
), G(z2nk+1, x2nk+1, y2nk+1))]

+(1− α)d(A,B) + d(x2mk
, x2mk+2) + d(x2nk+3, x2nk+1)

≤ α
3
{α
3
[d(x2mk

, x2nk+1) + d(y2mk
, y2nk+1) + d(z2mk

, z2nk+1)]

+(1−α)d(A,B)+ α
3
[d(y2mk

, y2nk+1)+d(z2mk
, z2nk+1)+d(x2mk

, x2nk+1)]

+(1−α)d(A,B)+ α
3
[d(z2mk

, z2nk+1)+d(x2mk
, x2nk+1)+d(y2mk

, y2nk+1)]

+(1−α)d(A,B)}+(1−α)d(A,B)+d(x2mk
, x2mk+2)+d(x2nk+3, x2nk+1)

= α2

3
[d(x2mk

, x2nk+1) + d(y2mk
, y2nk+1) + d(z2mk

, z2nk+1)]
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+(1− α2)d(A,B) + d(x2mk
, x2mk+2) + d(x2nk+3, x2nk+1)

< α2(d(A,B)+ε)+(1−α2)d(A,B)+d(x2mk
, x2mk+2)+d(x2nk+3, x2nk+1)

= d(A,B) + α2ε+ d(x2mk
, x2mk+2) + d(x2nk+3, x2nk+1).

Taking k →∞, we get

d(A,B) + ε ≤ d(A,B) + α2ε,

which is a contradiction and hence, condition (2.2.2) holds true. Since (2.2.2) holds and

d(x2n, x2n+1) → d(A,B), by using property UC∗ of (A,B), we deduce that {x2n} is a

Cauchy sequence. In a similar way, we can prove that {x2n+1}, {y2n}, {y2n+1}, {z2n}

and {z2n+1} are Cauchy sequences.

2.2.1 Tripled Fixed Point Theorems

By using the above lemmas, we shall prove the main theorem of Best Proximity Point:

Theorem 2.2.1.1 Let A and B be nonempty subsets of a metric space (X, d). The

mappings F : A × A × A → B and G : B × B × B → A satisfying the following

conditions:

(i) (F,G) is a cyclic contraction pair of mappings;

(ii) (A,B) and (B,A) satisfying the property UC∗.

If

x2n+1 = F (x2n, y2n, z2n), y2n+1 = F (y2n, z2n, x2n), z2n+1 = F (z2n, x2n, y2n),

for all n ∈ N ∪ {0},

and

x2n+2 = G(x2n+1, y2n+1, z2n+1), y2n+2 = G(y2n+1, z2n+1, x2n+1), z2n+2 = G(z2n+1, x2n+1, y2n+1),
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for all n ∈ N ∪ {0},

then

(a) {x2n}, {x2n+1}, {y2n}, {y2n+1}, {z2n} and {z2n+1} are Cauchy sequences.

(b) F and G have a tripled best proximity point, say respectively (p, q, r) and (p′, q′, r′)

such that

d(p, p′) + d(q, q′) + d(r, r′) = 3d(A,B),

whenever, as n→∞, we have x2n → p, y2n → q, z2n → r, x2n+1 → p′, y2n+1 → q′

and z2n+1 → r′.

Proof By Lemma 2.2.9, as n → ∞, we get d(x2n, x2n+1) → d(A,B). Then, by Lemma

2.2.11, we have that {x2n}, {y2n} and {z2n} are Cauchy sequences and hence, there exist

p, q, r ∈ A such that x2n → p, y2n → q and z2n → r. From

d(A,B) ≤ d(p, x2n−1) ≤ d(p, x2n) + d(x2n, x2n−1), (2.2.4)

letting n→∞ in (2.2.4), we have d(p, x2n−1)→ d(A,B). By a similar argument we get

d(q, y2n−1)→ d(A,B) and d(r, z2n−1)→ d(A,B). It follows that

d(x2n, F (p, q, r)) = d(G(x2n−1, y2n−1, z2n−1), F (p, q, r))

≤ α
3
[d(x2n−1, p) + d(y2n−1, q) + d(z2n−1, r)] + (1− α)d(A,B).

Taking n→∞, we get d(p, F (p, q, r)) = d(A,B). Similarly, we can prove that d(q, F (q, r, p)) =

d(A,B) and d(r, F (r, p, q)) = d(A,B). Consequently, (p, q, r) is a tripled best proximity

point of F.

Similarly, we can prove that there exist p′, q′, r′ ∈ B such that x2n+1 → p′, y2n+1 → q′

and z2n+1 → r′. Moreover, we also have d(p′, G(p′, q′, r′)) = d(A,B), d(q′, G(q′, r′, p′)) =

d(A,B) and d(r′, G(r′, p′, q′)) = d(A,B) and so (p′, q′, r′) is a tripled best proximity
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point of G.

Finally, we show that d(p, p′) + d(q, q′) + d(r, r′) = 3d(A,B). For n ∈ N ∪ {0}, we have

d(x2n, x2n+1) = d(G(x2n−1, y2n−1, z2n−1), F (x2n, y2n, z2n))

≤ α
3
[d(x2n−1, x2n) + d(y2n−1, y2n) + d(z2n−1, z2n)]

+(1− α)d(A,B),

and letting n→∞, we get

d(p, p′) ≤ α

3
[d(p, p′) + d(q, q′) + d(r, r′)] + (1− α)d(A,B). (2.2.5)

Analogously, for n ∈ N ∪ {0}, we have

d(y2n, y2n+1) = d(G(y2n−1, z2n−1, x2n−1), F (y2n, z2n, x2n))

≤ α
3
[d(y2n−1, y2n) + d(z2n−1, z2n) + d(x2n−1, x2n)]

+(1− α)d(A,B),

and letting n→∞, we get

d(q, q′) ≤ α

3
[d(q, q′) + d(r, r′) + d(p, p′)] + (1− α)d(A,B). (2.2.6)

Again, for n ∈ N ∪ {0}, we have

d(z2n, z2n+1) = d(G(z2n−1, x2n−1, y2n−1), F (z2n, x2n, y2n))

≤ α
3
[d(z2n−1, z2n) + d(x2n−1, x2n) + d(y2n−1, y2n)]

+(1− α)d(A,B),
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and letting n→∞, we get

d(r, r′) ≤ α

3
[d(r, r′) + d(p, p′) + d(q, q′)] + (1− α)d(A,B). (2.2.7)

It follows from (2.2.5), (2.2.6) and (2.2.7) that

d(p, p′) + d(q, q′) + d(r, r′) ≤ 3α

3
[d(p, p′) + d(q, q′) + d(r, r′)] + 3(1− α)d(A,B),

which implies that

d(p, p′) + d(q, q′) + d(r, r′) ≤ 3d(A,B). (2.2.8)

Since we know that d(A,B) ≤ d(p, p′), d(A,B) ≤ d(q, q′) and d(A,B) ≤ d(r, r′), so we

have

3d(A,B) ≤ d(p, p′) + d(q, q′) + d(r, r′). (2.2.9)

From (2.2.8) and (2.2.9), we have

d(p, p′) + d(q, q′) + d(r, r′) = 3d(A,B).

This completes the proof.

By using Lemma (2.2.9), we are ready to prove the following theorem.

Theorem 2.2.1.2 Let A and B be nonempty compact subsets of a metric space (X, d).

The maps F : A× A× A→ B and G : B × B × B → A be such that the ordered pair

(F,G) is a cyclic contraction, if

x2n+1 = F (x2n, y2n, z2n), y2n+1 = F (y2n, z2n, x2n), z2n+1 = F (z2n, x2n, y2n),

for all n ∈ N ∪ {0},

and

x2n+2 = G(x2n+1, y2n+1, z2n+1), y2n+2 = G(y2n+1, z2n+1, x2n+1), z2n+2 = G(z2n+1, x2n+1, y2n+1),

for all n ∈ N ∪ {0},
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then the mappings F and G have a tripled best proximity point, say respectively (p, q, r)

and (p′, q′, r′), such that

d(p, p′) + d(q, q′) + d(r, r′) = 3d(A,B).

Proof. Using Lemma 2.2.9, we have x2n, y2n, z2n ∈ A and x2n+1, y2n+1, z2n+1 ∈ B for all

n ∈ N ∪{0}. Since A is compact, the sequences {x2n}, {y2n} and {z2n} have convergent

subsequences {x2nk
}, {y2nk

} and {z2nk
} respectively, such that

x2nk
→ p ∈ A, y2nk

→ q ∈ A, and z2nk
→ r ∈ A,

as n→∞.

Clearly, we have

d(A,B) ≤ d(p, x2nk−1) ≤ d(p, x2nk
) + d(x2nk

, x2nk−1). (2.2.10)

Again, by Lemma 2.2.9, we obtain d(x2nk
, x2nk−1) → d(A,B) as n → ∞. Now taking

k →∞ in (2.2.10), we have d(p, x2nk−1)→ d(A,B).

By a similar argument, we observe that d(q, y2nk−1) → d(A,B) and d(r, z2nk−1) →

d(A,B).

Now, from

d(A,B) ≤ d((x2nk
, F (p, q, r))

= d(G(x2nk−1, y2nk−1, z2nk−1), F (p, q, r))

≤ α
3
[d(x2nk−1, p) + d(y2nk−1, q) + d(z2nk−1, r)] + (1− α)d(A,B),

letting k →∞, we get d(p, F (p, q, r)) = d(A,B).

Similarly, we can prove that d(q, F (q, r, p)) = d(A,B) and d(r, F (r, p, q)) = d(A,B).

Thus F has a tripled best proximity (p, q, r) ∈ A × A × A. Since B is also compact,

so we can prove in a similar way that G has a tripled best proximity point (p′, q′, r′) ∈
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B ×B ×B.

Finally, we show that d(p, p′) + d(q, q′) + d(r, r′) = 3d(A,B).

For n ∈ N ∪ {0}, we have

d(x2nk
, x2nk+1) = d(G(x2nk−1, y2nk−1, z2nk−1), F (x2nk

, y2nk
, z2nk

))

≤ α
3
[d(x2nk−1, x2nk

) + d(y2nk−1, y2nk
) + d(z2nk−1, z2nk

)]

+(1− α)d(A,B),

and letting n→∞, we get

d(p, p′) ≤ α

3
[d(p, p′) + d(q, q′) + d(r, r′)] + (1− α)d(A,B). (2.2.11)

Analogously, for n ∈ N ∪ {0}, we have

d(y2nk
, y2nk+1) = d(G(y2nk−1, z2nk−1, x2nk−1), F (y2nk

, z2nk
, x2nk

))

≤ α
3
[d(y2nk−1, y2nk

) + d(z2nk−1, z2nk
) + d(x2nk−1, x2nk

)]

+(1− α)d(A,B),

and letting n→∞, we get

d(q, q′) ≤ α

3
[d(q, q′) + d(r, r′) + d(p, p′)] + (1− α)d(A,B). (2.2.12)

Again, for n ∈ N ∪ {0}, we have

d(z2nk
, z2nk+1) = d(G(z2nk−1, x2nk−1, y2nk−1), F (z2nk

, x2nk
, y2nk

))

≤ α
3
[d(z2nk−1, z2nk

) + d(x2nk−1, x2nk
) + d(y2nk−1, y2nk

)]

+(1− α)d(A,B),
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and letting n→∞, we get

d(r, r′) ≤ α

3
[d(r, r′) + d(p, p′) + d(q, q′)] + (1− α)d(A,B). (2.2.13)

It follows from (2.2.11), (2.2.12) and (2.2.13) that

d(p, p′) + d(q, q′) + d(r, r′) ≤ 3α

3
[d(p, p′) + d(q, q′) + d(r, r′)] + 3(1− α)d(A,B),

which implies that

d(p, p′) + d(q, q′) + d(r, r′) ≤ 3d(A,B). (2.2.14)

On the other hand, we know that d(A,B) ≤ d(p, p′), d(A,B) ≤ d(q, q′) and d(A,B) ≤

d(r, r′), so we obtain by combining all to obtain the following condition:

3d(A,B) ≤ d(p, p′) + d(q, q′) + d(r, r′). (2.2.15)

Finally, from (2.2.14) and (2.2.15), we get

d(p, p′) + d(q, q′) + d(r, r′) = 3d(A,B).

This completes the proof.

Now, here we shall consider the case of d(A,B) = 0 to prove the following result as

a corollary to Theorem (2.2.1.2).

Corollary 2.2.1.3 Let A and B be nonempty compact subsets of a metric space (X, d),

satisfying all the hypothesis of Theorem (2.2.1.2). Indeed, if d(A,B) = 0, then F and

G have a unique common tripled fixed point (p, q, r) ∈ A ∩B × A ∩B × A ∩B.

Proof. If d(A,B) = 0 then (A,B) and (B,A) satisfying the property UC∗. Therefore,

by using Theorem 2.2.2.1 we claim that F has a tripled best proximity point
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(p, q, r) ∈ A× A× A that is

d(p, F (p, q, r)) = d(q, F (q, r, p)) = d(r, F (r, p, q) = d(A,B) (2.2.16)

and G has a tripled best proximity point (p′, q′, r′) ∈ B ×B ×B that is

d(p′, G(p′, q′, r′)) = d(q′, G(q′, r′, p′)) = d(r′, G(r′, p′, q′)) = d(A,B). (2.2.17)

Also by Theorem 2.2.1.2, we have

d(p, p′) + d(q, q′) + d(r, r′) = 3d(A,B). (2.2.18)

Assuming d(A,B) = 0 and using (2.2.16) we conclude that

p = F (p, q, r), q = F (q, r, p) and r = F (r, p, q),

i.e. (p, q, r) is a tripled fixed point of F.

Again using (2.2.17) and applying d(A,B) = 0, we get

p′ = G(p′, q′, r′), q′ = G(q′, r′, p′) and r′ = G(r′, p′, q′),

i.e. (p′, q′, r′) is a tripled fixed point of G.

A similar argument for (2.2.18) and d(A,B) = 0, we have

d(p, p′) + d(q, q′) + d(r, r′) = 0⇒ p = p′, q = q′ and r = r′.

Consequently, we conclude that (p, q, r) ∈ A ∩B ×A ∩B ×A ∩B is a common tripled

fixed point of F and G.

To show the uniqueness of common tripled fixed point of F and G, suppose that (p̂, q̂, r̂)

is also a common tripled fixed point of F and G, i.e.

p̂ = F (p̂, q̂, r̂) = G(p̂, q̂, r̂), q̂ = F (q̂, r̂, p̂) = G(q̂, r̂, p̂) and r̂ = F (r̂, p̂, q̂) = G(r̂, p̂, q̂).
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Using the fact that the ordered pair (F,G) is a cyclic contraction, we get

d(p, p̂) = d(F (p, q, r), G(p̂, q̂, r̂)) ≤ α

3
[d(p, p̂) + d(q, q̂) + d(r, r̂)], (2.2.19)

d(q, q̂) = d(F (q, r, p), G(q̂, r̂, p̂)) ≤ α

3
[d(q, q̂) + d(r, r̂) + d(p, p̂)], (2.2.20)

d(r, r̂) = d(F (r, p, q), G(r̂, p̂, q̂)) ≤ α

3
[d(r, r̂) + d(p, p̂) + d(q, q̂)]. (2.2.21)

Adding (2.2.19), (2.2.20) and (2.2.21), we obtain

d(p, p̂) + d(q, q̂) + d(r, r̂) ≤ α[d(p, p̂) + d(q, q̂) + d(r, r̂)],

which implies that d(p, p̂) + d(q, q̂) + d(r, r̂) = 0⇒ d(p, p̂) = d(q, q̂) = d(r, r̂) = 0. Thus

(p, q, r) is a unique common tripled fixed point of F and G in A ∩B ×A ∩B ×A ∩B.

Example 2.2.1.4 Let X = R endowed with the usual metric d(x, y) =| x− y | and let

A = [−1, 0] and B = [0, 1]. Define F : A× A× A→ B by

F (x, y, z) =
−x− y − z

6
and G(u, v, w) =

−u− v − w
12

.

Clearly, d(A,B) = 0 and (F,G) is a cyclic contraction with α = 1
2
. Indeed, for arbitrary

(x, y, z) ∈ A× A× A and (u, v, w) ∈ B ×B ×B, we get

d(F (x, y, z), G(u, v, w)) =| −x−y−z
6
− −u−v−w

12
|

≤| −x−y−z
6

+ 2u+2v+2w
12

|

= 1
6
(| x− u | + | y − v | + | z − w |)

= α
3
[d(x, u) + d(y, v) + d(z, w)] + (1− α)d(A,B).

Therefore, all the hypotheses of Corollary 2.2.1.3 hold. Thus, F and G have a unique

common tripled fixed point (0, 0, 0) ∈ A ∩B × A ∩B × A ∩B.

If we take A = B and F = G in Corollary 2.2.1.3, then we obtain the following conse-

33



quence.

Corollary 2.2.1.5 Let A be a nonempty compact subset of a metric space (X, d) and

F : A× A× A→ A be such that

d(F (x, y, z), F (u, v, w)) ≤ α

3
[d(x, u) + d(y, v) + d(z, w)], (2.2.22)

for all (x, y, z), (u, v, w) ∈ A × A × A and some non-negative number α < 1. Then F

has a unique tripled fixed point (p, q, r) ∈ A× A× A.

2.2.2 Application in Integral Equations

Now, we shall establish an application in integral equation to our corollary(2.2.1.5):

x(t) =

∫ T

0

k(t, s)[f(s, x(s)) + g(s, x(s)) + h(s, x(s))] ds+ b(t), t ∈ [0, T ]. (2.2.23)

Let C([0, T ],R) be the set of continuous functions defined on [0, T ], where T > 0. Also

define the metric d : R× R→ R by

d(x, u) = sup
t∈[0,T ]

|x(t)− u(t)|, for all x, u ∈ R.

Note that (C([0, T ],R), d) is a complete metric space. Let Y be a compact subset of

(C([0, T ],R), d).

Now, we are ready to prove the following theorem:

Theorem 2.2.2.1Suppose the following hypothesis are satisfied:

(h1) k ∈ C([0, T ]× [0, T ],R) and sup
s,t∈[0,T ]

|k(t, s)| = δ < 1/T ;

(h2) b ∈ Y ;
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(h3) f, g, h ∈ C([0, T ]× R,R);

(h4) for all x, y, z, u, v, w ∈ Y and t ∈ [0, T ] we have

|f(t, x(t))− f(t, u(t))|+ |g(t, y(t))− g(t, v(t))|+ |h(t, z(t))− h(t, w(t))|

≤ 1

3
(|x(t)− u(t)|+ |y(t)− v(t)|+ |z(t)− w(t)|).

Then, the integral equation (2.2.23) has a unique solution.

Proof. Define the mapping F : Y × Y × Y → Y by

F (x, y, z)(t) =

∫ T

0

k(t, s)[f(s, x(s)) + g(s, y(s)) + h(s, z(s))] ds+ b(t), t ∈ [0, T ].

It is easy to show that (x, y, z) is a solution of (2.2.23) if and only if (x, y, z) is a tripled

fixed point of F . Now, we intend to prove the existence and uniqueness of such a point,

by using Corollary 2.2.1.5. Indeed, by hypothesis (h4) we get easily

|F (x, y, z)(t)− F (u, v, w)(t)|

≤
∫ T
0
|k(t, s)| 1

3
[|x(s)− u(s)|+ |y(s)− v(s)|+ |z(s)− w(s)|] ds

≤ 1
3

(∫ T
0
|k(t, s)| ds

)
[d(x, u) + d(y, v) + d(z, w)],

for all x, y, z, u, v, w ∈ Y and t ∈ [0, T ].

By hypothesis (h1), it follows that

d(F (x, y, z), F (u, v, w)) ≤ δT

3
[d(x, u) + d(y, v) + d(z, w)],

for all x, y, z, u, v, w ∈ Y , that is condition (2.2.22) of Corollary 2.2.1.5 holds true with

α = δT < 1. Hence, by using Corollary 2.2.1.5, we obtain a unique tripled fixed point

of F and so the integral equation (2.2.23) has a unique solution.
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2.3 Section II

In this section, we improve the results of Babu and Alemayehu([60]) in metric spaces

by giving shorter proof than of Babu and Alemayehu([60]).

We recall the following definitions to prove our theorems and propositions:

Definition 2.3.1([57]). Let A and S be selfmaps of a set X. If A(u) = S(u) = w (say),

w ∈ X, for some u in X, then u is called a coincidence point of A and S and the set

of coincidence points of A and S in X is denoted by C(A, S) and w is called a point

of coincidence of A and S.

Definition 2.3.2 Let A,B, S and T be selfmaps of a set X. If u ∈ C(A, S) and v ∈

C(B, T ) for some u, v ∈ X and A(u) = S(u) = B(v) = T (v) = z(say), then z is called

a common point of coincidence of the pairs (A, S) and (B, T ).

Definition 2.3.3 The pair (A, S) is said to be

(i) satisfy property (E.A)([109]) if there exists a sequence {xn} in X such that

lim
n→∞

A(xn) = lim
n→∞

S(xn) = t for some t in X.

(ii) be compatible ([53]) if lim
n→∞

d(AS(xn), SA(xn)) = 0, for some t in X whenever

{xn} is a sequence in X such that lim
n→∞

A(xn) = lim
n→∞

S(xn) = t.

(iii) be weakly compatible ([58]), if the commute at their coincidence point.

(iv) be occasionally weakly compatible (owc) ([111], [113]), if AS(x) = SA(x) for some

x ∈ C(A, S).

Remark 2.3.4 (i) Every compatible pair is weakly compatible but not conversely([58]).

(ii) Weak compatibility and property (E. A) are independent to each other ([69]).
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(iii) Every weakly compatible pair is occasionally weakly compatible but its converse

need not be true ([114]).

(iv) Occasionally weakly compatible and property (E. A) are independent of each other

([59]).

Definition 2.3.5 ([169]) Let (X, d) be a metric space and A,B, S and T be four selfmaps

on X. The pairs (A, S) and (B, T ) are said to satisfy common property (E.A), if there

exist two sequences {xn} and {yn} in X such that lim
n→∞

A(xn) = lim
n→∞

S(xn) = t =

lim
n→∞

B(yn) = lim
n→∞

T (yn) for some t in X.

Remark 2.3.6 Let A,B, S and T be self maps of a set X. If the pairs (A, S) and

(B, T ) have common point of coincidence in X then C(A, S) 6= φ and C(B, T ) 6= φ.

But converse is not true.

Example 2.3.7 Let X = [0, 1] with usual metric and A,B, S and T self maps on X

and defined by A(x) = 1− x2; S(x) = 1− x; B(x) = 1
2

+ x2; T (x) = 1+x
2

for all x ∈ X.

When x = 0, then A(0) = S(0) = 1 and when x = 1, then A(1) = S(1) = 0.

When x = 0, then B(0) = T (0) = 1
2

and when x = 1
2
, then B(1

2
) = T (1

2
) = 3

4
.

Then we observe that C(A, S) = {0, 1} and C(B, T ) = {1
2
, 3
4
} but the pairs (A, S) and

(B, T ) not having common point of coincidence.

Remark 2.3.8 The converse of the Remark 2.3.6 is true provided it satisfies inequality

(2.3.2).

Proposition 2.3.9 ([110]) Let A and S be two self maps of a set X and the pair (A, S)

is satisfies occasionally weakly compatible(owc) condition. If the pair (A, S) have unique

point of coincidence A(x) = S(x) = z, then z is the unique common fixed point of A
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and S.

Proof: Let

A(x) = S(x) = {z}(say ) for any x ∈ C(A, S). (2.3.1)

Assume the pair (A, S) satisfies the property owc, so that

A(z) = AS(x) = SA(x) = S(z) implies that z ∈ C(A, S).

From (2.3.1), we get A(z) = S(z) = z.

Hence proposition follows.

Tas, Telci, Fisher ([86]) proved the following:

Theorem 2.3.10 Let A,B, S and T be selfmaps of a complete metric space (X, d) such

that A(X) ⊆ T (X) and B(X) ⊆ S(X) and satisfy the inequality

[d(Ax,By)]2 ≤ c1 max{[d(Sx,Ax)]2, [d(Ty,By)]2, [d(Sx, Ty)]2}

+c2 max{d(Sx,Ax)d(Sx,By), d(Ty,Ax)d(Ty,By)}

+c3d(Sx,By)d(Ty,Ax)

for all x, y ∈ X, where c1, c2, c3 ≥ 0, c1 + 2c2 < 1, c1 + c3 < 1. Further, assume that the

pairs (A, S) and (B, T ) are compatible on X. If one of the mappings A,B, S and T is

continuous, then A,B, S and T have a unique common fixed point in X.

2.3.1 Main Results

First we establish the following propositions:

Proposition 2.3.1.1 Let A,B, S and T be self maps of a metric space (X, d) satisfying:

[d(Ax,By)]2 ≤ c1 max{[d(Sx,Ax)]2, [d(Ty,By)]2, [d(Sx, Ty)]2}

+c2 max{d(Sx,Ax)d(Sx,By), d(Ty,Ax)d(Ty,By)}

+c3d(Sx,By)d(Ty,Ax) (2.3.2)
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for all x, y ∈ X, where c1, c2, c3 ≥ 0 and c1 + c3 < 1. Then the pairs (A, S) and (B, T )

have a common point of coincidence in X if and only if C(A, S) 6= φ and C(B, T ) 6= φ.

Proof. If Part: It is trivial.

Only if part: Assume C(A, S) 6= φ and C(B, T ) 6= φ.

Then there is a u ∈ C(A, S) and v ∈ C(B, T ) such that

A(u) = S(u) = p (say) (2.3.3)

B(v) = T (v) = q (say) . (2.3.4)

On taking x = u and y = v in (2.3.2), we get

[d(Au,Bv)]2 ≤ c1 max{[d(Su,Au)]2, [d(Tv,Bv)]2, [d(Su, Tv)]2}

+c2 max{d(Su,Au)d(Su,Bv), d(Tv,Au)d(Tv,Bv)}

+c3d(Su,Bv)d(Tv,Au).

Using (2.3.3) and (2.3.4), we get

[d(p, q)]2 ≤ (c1 + c3)[d(p, q)]2, a contradiction. Thus p = q.

Therefore A,B, S and T have common point of coincidence in X.

Proposition 2.3.1.2 Let A,B, S and T be four self maps of a metric space (X,d)

satisfying the inequality (2.3.2). Suppose that either

(i) B(X) ⊆ S(X), the pair (B, T ) satisfies property (E.A.) and T (X) is a closed sub-

space of X; or
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(ii) A(X) ⊆ T (X), the pair (A, S) satisfies property (E.A.) and S(X) is a closed

subspace of X, holds.

then,

(a) the pairs (A, S) and (B, T ) satisfy the common property (E.A.), and

(b) the pairs (A, S) and (B, T ) have a common point of coincidence in X.

Now, we are going to present the improved version of Theorem 2.2, ([60])

Theorem 2.3.1.3 Let A,B, S and T satisfy all the conditions given in Proposition

2.3.1.2 and the following additional assumption that the pairs (A, S) and (B, T ) are

owc on X.

Then A,B, S and T have a unique common fixed point in X.

Proof. By Proposition 2.3.1.2 the pairs (A, S) and (B, T ) have common point of coin-

cidence. Therefore there is u ∈ C(A, S) and v ∈ C(B, T ) such that

A(u) = S(u) = z(say) = B(v) = T (v). (2.3.5)

Now, we show that z is unique common point of coincidence of the pairs (A, S) and

(B, T ).

Let if possible z′ is another point of coincidence of A,B, S and T . Then there is u′ ∈

C(A, S) and v′ ∈ C(B, T ) such that

A(u′) = S(u′) = z′(say) = B(v′) = T (v′). (2.3.6)

Putting x = u and y = v′ in inequality (2.3.2), we have

[d(Au,Bv)]2 ≤ c1 max{[d(Su,Au)]2, [d(Tv,Bv)]2, [d(Su, Tv)]2}
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+c2 max{d(Su,Au)d(Su,Bv), d(Tv,Au)d(Tv,Bv)}

+c3d(Su,Bv)d(Tv,Au)

Now, using (2.3.5) and (2.3.6), we get

[d(z, z′)]2 ≤ (c1 + c3)[d(z, z′)]2 and arrive at a contradiction. Hence z = z′ and we have

C(A, S) = {z} = C(B, T )

By Proposition 2.3.9, z is the unique common fixed point of A,B, S and T in X.

Remark 2.3.1.4 Proposition 2.5 of ([60]) and Theorem 2.6 of ([60]) are remain true, if

we replace completeness of S(X) and T (X) by the completeness of S(X)∩ T (X) in X.

For this we have given an Example 2.3.7 in the following manner without proof.

Now, we modify the Proposition 2.5 and Theorem 2.6 of ([60]).

Proposition 2.3.1.5 Let A,B, S and T be four self maps of a metric space (X, d)

satisfying the inequality (2.3.2) of proposition 2.3.1.1 Suppose that (A, S) and (B, T )

satisfy a common property (E.A) and S(X) ∩ T (X) is a closed subspace of X, then

A,B, S and T have unique common point of coincidence.

Theorem 2.3.1.6 In addition to the above proposition 2.3.1.5 on A,B, S and T , if

both the pairs (A, S) and (B, T ) are owc maps on X, then the point of coincidence is a

unique common fixed point of A,B, S and T .

Proof. By Proposition 2.3.1.5 the pairs (A, S) and (B, T ) have common point of coin-

cidence. Therefore there is u ∈ C(A, S) and v ∈ C(B, T ) such that

A(u) = S(u) = z(say) = B(v) = T (v). (2.3.7)

Now, we show that z is unique common point of coincidence of the pairs (A, S) and
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(B, T ).

Let if possible z′ is another point of coincidence of A,B, S and T . Then there is u′ ∈

C(A, S) and v′ ∈ C(B, T ) such that

A(u′) = S(u′) = z′(say) = B(v′) = T (v′). (2.3.8)

Putting x = u and y = v′ in inequality (2.3.2), we have

[d(Au,Bv)]2 ≤ c1 max{[d(Su,Au)]2, [d(Tv,Bv)]2, [d(Su, Tv)]2}

+c2 max{d(Su,Au)d(Su,Bv), d(Tv,Au)d(Tv,Bv)}

+c3d(Su,Bv)d(Tv,Au)

Now, using (2.3.7) and (2.3.8), we get

[d(z, z′)]2 ≤ (c1 + c3)[d(z, z′)]2 and arrive at a contradiction. Hence z = z′ and we have

C(A, S) = {z} = C(B, T )

By Proposition 2.3.9, z is the unique common fixed point of A,B, S and T in X.

Now, we are ready to give an example to support our main Theorem 2.3.1.4.

Example 2.3.1.7 Let X = [1
3
, 1) with the usual metric. We define mappings A,B, S

and T on X by

A(x) =


1
3
, if, x ∈ [1

3
, 2
3
);

2
3
, if, x ∈ [2

3
, 1)

B(x) =


3
4
, if, x ∈ [1

3
, 2
3
);

2
3
, if, x ∈ [2

3
, 1)
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S(x) =


1
2
, if, x ∈ [1

3
, 2
3
);

1
3

+ x
2
, if, x ∈ [2

3
, 1)

T (x) =


5
6
, if, x ∈ [1

3
, 2
3
);

1− x
2
, if, x ∈ [2

3
, 1)

We observe that S(X) = {1
2
} ∪ [2

3
, 5
6
) and T (X) = (1

2
, 2
3
] ∪ {5

6
} are not closed and

S(X) ∩ T (X) = {2
3
} is a closed subspace of X.

The pairs (A, S) and (B, T ) satisfies a common property (E.A) at the sequence {xn},

{xn} = 2
3

+ 1
n+3

, n = 1, 2, 3, ... in X.

Case (i): If x, y ∈ [1
3
, 2
3
) then the inequality (2.3.2), we get

( 5
12

)2 ≤ c1 max{(16)2, ( 1
12

)2, (1
3
)2}+ c2 max{16 .

1
4
, 1
2
. 1
12
}+ c3

1
4
.1
2

i.e., 25 ≤ 16c1 + c26 + c318

Case (ii): If x, y ∈ [2
3
, 1) the inequality (2.3.2) holds trivial.

Case (iii): If x ∈ [1
3
, 2
3
) and y ∈ [2

3
, 1) then from inequality (2.3.2), we have

(1
3
)2 ≤ c1max{ 1

36
, (y

2
− 1

3
)2, (1−y

2
)2}+ c2max{ 1

36
, (2

3
− y

2
)(y

2
− 1

3
)}+ c3(

2
3
− y

2
).

4 ≤ c1 + c2 + c3.(4− 3y).

Case (iv): if x ∈ [2
3
, 1) and y ∈ [1

3
, 2
3
)

( 1
12

)2 ≤ c1max{(x2 −
1
3
)2, ( 1

12
)2, (x−1

2
)2}+ c2max{| x2 −

1
3
|| x

2
− 5

12
|, 1

6
. 1
12
}

+c3
1
6
| x

2
− 5

12
|

In all cases the inequality (2.3.2) holds with c1 = 1
3
, c2 = 55

6
and c3 = 1

2
. The pairs (A, S)

and (B, T ) satisfies owc at the point 2
3
. The point 2

3
is a unique fixed point of A,B, S

and T.
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Chapter 3
TRIPLED COMMON FIXED POINT THEOREMS IN
ORDERED CONE METRIC SPACES

3.1

In this chapter, we establish a tripled coincidence point theorem in ordered cone metric

spaces over a solid cone. Our results extends coupled common fixed point theorems of

Nashine, Kadelburg and Radenovic ([68]).

We recall some definitions for our main results.

Cone metric spaces:

Definition 3.1.1 Let E be a real Banach space with respect to a given norm ‖ . ‖E

and let 0E be the zero vector of E. A non-empty subset P of E is called a cone, if the

following conditions hold:

1. P is closed, non-empty and P 6= {0E};

2. a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ (ax+ by) ∈ P ;

3. x ∈ P and −x ∈ P ⇒ x = 0.

A cone P ⊂ E is partial ordering � with respect to P is naturally defined by x � y if

and only if y − x ∈ P for x, y ∈ E. We shall write x � y to indicate that x � y but

∗Published in
“Tripled common fixed point theorems for w-compatible mappings in ordered cone metric spaces,

”Advances in Fixed Point Theory, 2 (2012), No. 2, 157-175 ISSN: 1927-6303, Available online at
http://scik.org
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x 6= y while x� y will stand for y − x ∈ int(P ), int(P ) denotes the interior of P.

The cone P is called normal if there is a number K > 0 such that for all x, y ∈ E,

0E � x � y implies ‖ x ‖E≤ K ‖ y ‖E.

We always suppose that E is a real Banach spaces with cone P satisfying int(P ) 6= ∅

(such cones are called solid).

Definition 3.1.2 Let X be a nonempty set. Suppose the mapping d : X × X → P

satisfies:

1. d(x, y) = 0E if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. It is

obvious that cone metric spaces generalizes metric spaces.

Example 3.1.3 Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R and

d : X ×X → E such that d(x, y) = (|x− y|, α|x− y|), where α ≥ 0 is a constant. Then

(X, d) is a cone metric space.

Definition 3.1.4 Let (X, d) be a cone metric space. Let {xn} be a sequence in X and

x ∈ X.

(a) If for every c ∈ E with 0E � c there is N ∈ N such that d(xn, x) � c, for

all n ≥ N, then {xn} is said to be convergent to x. This limit is denoted by

limn→∞xn = x or xn → x as n→∞.

(b) If for every c ∈ E with 0E � c there is N ∈ N such that d(xn, xm) � c, for all

n,m ≥ N, then {xn} is called a Cauchy sequence in X.

(c) If every Cauchy sequence in X is convergent in X, then (X, d) is called a complete

cone metric spaces.

45



Let (X, d) be a cone metric space. Then the following properties are often used(particularly

when dealing with cone metric spaces in which the cone need not be normal):

(P1) If E is a real Banach space with a cone P and if a � ha where a ∈ P and h ∈ [0, 1),

then a = 0E;

(P2) if 0E � u� c for each 0E � c, then u = 0E;

(P3) if u, v, w ∈ E, u � v and v � w, then u� w;

(P4) if c ∈ int(P ), 0 � an ∈ E and an → 0E, then there exists k ∈ N such that for all

n > k we have an � c.

In 2004, the concept of partially ordered metric space(POMS) was introduced by Ran

and Reurings ([20] ). Guo and Lakshmikantham ([37]) studied the concept of cou-

pled fixed points in POMS. Later Bhaskar and Lakshmikantham ([154]) introduced the

monotone property in POMS and their results were supported by an application to the

existence of periodic boundary value problems. Recently, Karapinar([46]) proved cou-

pled fixed point theorems for nonlinear contractions in ordered cone metric spaces over

normal cones without regularity condition. He assumed continuity and commutativity

for both maps in a complete POMS. Shatanawi ([167]) proved coupled coincidence and

coupled fixed point theorems in cone metric spaces which were not necessarily normal.

Some results on these spaces are given by Sabetghadam ([48]) , Ding and Li ([66]), and

Aydi, Samet and Vetro([67]).

According to Borcut and Berinde ([157]), we recall the following definition(3.1.5 - 3.1.6):

Consider partial ordering on X ×X ×X in the following manner:

for (x, y, z), (u, v, w) ∈ X ×X ×X, (u, v, w) ≤ (x, y, z)⇔ x ≥ u, y ≤ v, z ≥ w.

Definition 3.1.5 Let (X,≤) be a partially ordered set and F : X × X × X → X

and g : X → X. The mapping F is said to have mixed g - monotone property if F is
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monotone g - non-decreasing in x and z is monotone g - non-increasing in y that is, for

any x, y, z ∈ X

x1, x2 ∈ X, g(x1) ≤ g(x2)⇒ F (x1, y, z) ≤ F (x2, y, z) (3.1.1)

y1, y2 ∈ X, g(y1) ≤ g(y2)⇒ F (x, y1, z) ≥ F (x, y2, z) (3.1.2)

z1, z2 ∈ X, g(z1) ≤ g(z2)⇒ F (x, y, z1) ≤ F (x, y, z2) (3.1.3)

hold.

Definition 3.1.6 Let (X, d,�) be a nonempty ordered cone metric space and

F : X ×X ×X → X, g : X → X. An element (x, y, z) ∈ X ×X ×X is called:

(T1) a tripled coincidence point of mappings F and g if F (x, y, z) = g(x), F (y, x, y) =

g(y), F (z, y, x) = g(z).

(T2) a tripled fixed point of the F if F (x, y, z) = g(x) = x, F (y, x, y) = g(y) = y and

F (z, y, x) = g(z) = z; in this case (gx, gy, gz) is called a triplet point of coincidence.

Definition 3.1.7 ([91]) Let (X, d,�) be a nonempty ordered cone metric space. Then

we say that the mappings F : X ×X ×X → X and g : X → X are w - compatible if,

gF (x, y, z) = F (g(x), g(y), g(z)), gF (y, z, y) = F (g(y), g(z), g(y)) and gF (z, y, x) =

F (g(z), g(y), g(x)), holds, whenever g(x) = F (x, y, z), g(y) = F (y, z, y) and g(z) =

F (z, y, x).

3.1.1 Main Results

Theorem 3.1.1.1 Let (X, d,�) be an ordered cone metric space over a solid cone P.

Let F : X × X × X → X and g : X → X be mappings such that F has a mixed g -
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monotone property on X and there exists three elements x0, y0, z0 ∈ X with


g(x0) � F (x0, y0, z0),

g(y0) � F (y0, z0, y0)

g(z0) � F (z0, x0, y0).

(3.1.4)

Suppose further that F and g satisfy

d(F (x, y, z), F (u, v, w)) � a1d(gx, gu) + a2d(F (x, y, z), gx) + a3d(gy, gv)

+a4d(F (u, v, w), gu) + a5d(F (x, y, z), gu)

+a6d(F (u, v, w), gx), (3.1.5)

for all (x, y, z), (u, v, w) ∈ X ×X ×X with (gx � gu, gy � gv and gz � gw), where

ai ≥ 0, for i = 1, 2, ..., 6 and
∑6

i=1 ai < 1. Further suppose that

F (X ×X ×X) ⊆ g(X); (3.1.6)

g(X) is a complete subspaces of X. (3.1.7)

Also, suppose that if X has the following properties:

(i) {xn} is a non - decreasing sequence in X such that xn → x, then xn � x for all

n ∈ N,

(ii) {yn} is a non - increasing sequence in X such that yn → y, then yn � y for all

n ∈ N,

(iii) {zn} is a non - decreasing sequence in X such that zn → z, then zn � z for all

n ∈ N,
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then there exist x, y, z ∈ X such that g(x) = F (x, y, z), g(y) = F (y, z, y) and

g(z) = F (z, x, y), that is, F and g have a tripled coincidence point in X.

Proof.

Let x0, y0, z0 ∈ X be such that g(x0) � F (x0, y0, z0), g(y0) � F (y0, z0, y0) and

g(z0) � F (z0, x0, y0).

Since F (X ×X ×X) ⊆ g(X), we can define x1, y1, z1 ∈ X such that

g(x1) = F (x0, y0, z0), g(y1) = F (y0, z0, y0) and g(z1) = F (z0, x0, y0).

For x2, y2, z2 ∈ X we can define

g(x2) = F (x1, y1, z1), g(y2) = F (y1, z1, y1) and g(z2) = F (z1, x1, y1).

Proceeding in this way, we can construct three sequences {xn}, {yn} and {zn} in X such

that

g(xn+1) = F (xn, yn, zn), g(yn+1) = F (yn, zn, yn), g(zn+1) = F (zn, xn, yn). (3.1.8)

for all n ≥ 0.

Now we prove that for all n ≥ 0,

g(xn) � g(xn+1), g(yn) � g(yn+1) and g(zn) � g(zn+1). (3.1.9)

By condition (3.1.5), we have g(x0) � F (x0, y0, z0) = g(x1), g(y0) � F (y0, z0, y0) =

g(y1) and g(z0) � F (z0, x0, y0) = g(z1). i.e., (3.1.9) holds for n = 0. We assume

that (3.1.9) holds for some n > 0. As F has the mixed g - monotone property and

g(xn) � g(xn+1), g(yn) � g(yn+1) and g(zn) � g(zn+1), from (3.1.8) and (3.1.1 -
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3.1.3), we get 
g(xn+1) = F (xn, yn, zn) � F (xn+1, yn, zn),

g(yn+1) = F (yn, zn, yn) � F (yn+1, zn, yn),

g(zn+1) = F (zn, xn, yn) � F (zn+1, xn, yn).

(3.1.10)

Also, we have


g(xn+2) = F (xn+1, yn+1, zn+1) � F (xn+1, yn, zn),

g(yn+2) = F (yn+1, zn+1, yn+1) � F (yn+1, zn, yn),

g(zn+2) = F (zn+1, xn+1, yn+1) � F (zn+1, xn, yn).

(3.1.11)

Then from (3.1.10) and (3.1.11) we obtain

g(xn+1) � g(xn+2), g(yn+1) � g(yn+2) and g(zn+2) � g(zn+2).

By induction, we conclude that (3.1.9) holds for all n ≥ 0.

Using condition (3.1.5), we have

d(gxn, gxn+1) = d(F (xn−1, yn−1, zn−1), F (xn, yn, zn))

� a1d(gxn−1, gxn) + a2d(F (xn−1, yn−1, zn−1), gxn−1)) + a3d(gyn−1, gyn)

+a4d(F (xn, yn, zn), gxn)) + a5d(F (xn−1, yn−1, zn−1), gxn))

+a6d(F (xn, yn, zn), gxn−1))

= a1d(gxn−1, gxn) + a2d(gxn, gxn−1) + a3d(gyn−1, gyn) + a4d(gxn+1, gxn)

+a5d(gxn, gxn) + a6d(gxn+1, gxn−1)

� a1d(gxn−1, gxn) + a2d(gxn, gxn−1) + a3d(gyn−1, gyn) + a4d(gxn+1, gxn)

+a6[d(gxn+1, gxn) + d(gxn, gxn−1)].

= (a1 + a2 + a6)d(gxn−1, gxn) + (a4 + a6)d(gxn, gxn+1) + a3d(gyn−1, gyn)
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which implies that

(1− a4 − a6)d(gxn, gxn+1) � (a1 + a2 + a6)d(gxn−1, gxn) + a3d(gyn−1, gyn) (3.1.12)

Similarly,

d(gyn, gyn+1) = d(F (yn−1, zn−1, yn−1, F (yn, zn, yn))

� a1d(gyn−1, gyn) + a2d(F (yn−1, zn−1, yn−1, gyn−1)) + a3d(gzn−1, gzn)

+a4d(F (yn, zn, yn, gyn)) + a5d(F (yn−1, zn−1, yn−1, gyn))

+a6d(F (yn, zn, xn, gyn−1))

= a1d(gyn−1, gyn) + a2d(gyn, gyn−1) + a3d(gzn−1, gzn) + a4d(gyn+1, gyn)

+a5d(gyn, gyn) + a6d(gyn+1, gyn−1)

� a1d(gyn−1, gyn) + a2d(gyn, gyn−1) + a3d(gzn−1, gzn) + a4d(gyn+1, gyn)

+a6[d(gyn+1, gyn) + d(gyn, gyn−1)].

= (a1 + a2 + a6)d(gyn−1, gyn) + (a4 + a6)d(gyn, gyn+1) + a3d(gzn−1, gzn)

which implies that

(1− a4 − a6)d(gyn, gyn+1) � (a1 + a2 + a6)d(gyn−1, gyn) + a3d(gzn−1, gzn) (3.1.13)

Also,

d(gzn, gzn+1) = d(F (zn−1, xn−1, yn−1), F (zn, xn, yn))

� a1d(gzn−1, gzn) + a2d(F (zn−1, xn−1, yn−1, gzn−1)) + a3d(gxn−1, gxn)
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+a4d(F (zn, xn, yn, gzn)) + a5d(F (zn−1, xn−1, yn−1, gzn))

+a6d(F (zn, xn, yn, gzn−1))

= a1d(gzn−1, gzn) + a2d(gzn, gzn−1) + a3d(gxn−1, gxn) + a4d(gzn+1, gzn)

+a5d(gzn, gzn) + a6d(gzn+1, gzn−1)

� a1d(gzn−1, gzn) + a2d(gzn, gzn−1) + a3d(gxn−1, gxn) + a4d(gzn+1, gzn)

+a6[d(gzn+1, gzn) + d(gzn, gzn−1)]

= (a1 + a2)d(gzn−1, gzn) + a3d(gxn−1, gxn) + a4d(gzn+1, gzn)

+a6[d(gzn+1, gzn) + d(gzn, gzn−1)]

= (a1 + a2 + a6)d(gzn−1, gzn) + (a4 + a6)d(gzn+1, gzn) + a3d(gxn−1, gxn)

which implies that

(1− a4 − a6)d(gzn, gzn+1) � (a1 + a2 + a6)d(gzn−1, gzn) + a3d(gxn−1, gxn) (3.1.14)

Adding (3.1.12), (3.1.13) and (3.1.14) we obtain that

(1− a4 − a6)[d(gxn, gxn+1) + d(gyn, gyn+1) + d(gzn, gzn+1)]

� (a1 + a2 + a6)[d(gxn−1, gxn) + d(gyn−1, gyn) + d(gzn−1, gzn)]

+a3[d(gxn−1, gxn) + d(gyn−1, gyn) + d(gzn−1, gzn)]

= (a1 + a2 + a3 + a6)[d(gxn−1, gxn) + d(gyn−1, gyn) + d(gzn−1, gzn)] (3.1.15)

Now starting from d(gxn+1, gxn) = d(F (xn, yn, zn), F (xn−1, yn−1, zn−1)) and using that

g(xn−1) � g(xn), g(yn−1) � g(yn) and g(zn−1) � g(zn),

we get that
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d(gxn+1, gxn) = d(F (xn, yn, zn, F (xn−1, yn−1, zn−1))

� a1d(gxn, gxn−1) + a2d(F (xn, yn, zn, gxn)) + a3d(gyn, gyn−1)

+a4d(F (xn−1, yn−1, zn−1, gxn)) + a5d(F (xn, yn, zn, gxn−1))

+a6d(F (xn−1, yn−1, zn−1, gxn))

= a1d(gxn, gxn−1) + a2d(gxn+1, gxn) + a3d(gyn, gyn−1) + a4d(gxn, gxn−1)

+a5d(gxn+1, gxn−1) + a6d(gxn, gxn))

= a1d(gxn, gxn−1) + a2d(gxn+1, gxn) + a3d(gyn, gyn−1) + a4d(gxn, gxn−1)

+a5[d(gxn+1, gxn) + d(gxn, gxn−1)]

d(gxn+1, gxn) = (a1 + a4 + a5)d(gxn, gxn−1) + (a2 + a5)d(gxn+1, gxn) + a3d(gyn, gyn−1)

(3.1.16)

Similarly,

d(gyn+1, gyn) = d(F (yn, zn, yn, F (yn−1, zn−1, yn−1))

� (a1 + a4 + a5)d(gyn, gyn−1) + (a2 + a5)d(gyn+1, gyn)

+a3d(gzn, gzn−1) (3.1.17)

d(gzn+1, gzn) � (a1 + a4 + a5)d(gzn, gzn−1) + (a2 + a5)d(gzn+1, gzn)

+a3d(gxn, gxn−1) (3.1.18)
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Combining (3.1.16), (3.1.17) and (3.1.18) we obtain that

(1− a2 − a5)[d(gxn+1, gxn) + d(gyn+1, gyn) + d(gzn+1, gzn)]

� (a1 + a4 + a5)[d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)]

+a3[d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)]

= (a1 + a3 + a4 + a5)[d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)] (3.1.19)

Again combining (3.1.15) and (3.1.19), we get

[d(gxn+1, gxn) + d(gyn+1, gyn) + d(gzn+1, gzn)]

� (2a1 + a2 + 2a3 + a4 + a5 + a6
2− a2 − a4 − a5 − a6 )[d(gxn, gxn−1)+d(gyn, gyn−1)+d(gzn, gzn−1)]

= λ[d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)]

where λ = 2a1 + a2 + 2a3 + a4 + a5 + a6
2− a2 − a4 − a5 − a6 and 0 ≤ λ < 1.

Since
∑6

i=1 ai < 1. using the above relation n - times, we obtain

d(gxn+1, gxn) + d(gyn+1, gyn) + d(gzn+1, gzn)

� λ[d(gxn−1, gxn) + d(gyn−1, gyn) + d(gzn−1, gzn)]

� λ2[d(gxn−2, gxn−1) + d(gyn−2, gyn−1) + d(gzn−2, gzn−1)]

...

� λn[d(gx0, gx1) + d(gy0, gy1) + d(gz0, gz1)].

d(gxn+1, gxn)+d(gyn+1, gyn)+d(gzn+1, gzn) � λn[d(gx0, gx1)+d(gy0, gy1)+d(gz0, gz1)].

(3.1.20)

As letting n→∞ in (3.1.20), we obtain

d(gxn+1, gxn) + d(gyn+1, gyn) + d(gzn+1, gzn)→ 0E as n→∞.
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Hence, d(gxn+1, gxn) = d(gyn+1, gyn) = d(gzn+1, gzn)→ 0E as n→∞.

Now we will show that {gxn}, {gyn}and{gzn} are Cauchy sequences. For anym > n ≥ 1,

and repeated use of triangle inequality, we have

d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm)

� d(gxn, gxn+1) + d(gxn+1, gxn+2) + · · ·+ d(gxm−1, gxm)

+d(gyn, gyn+1) + d(gyn+1, gyn+2) + · · ·+ d(gym−1, gym)

+d(gzn, gzn+1) + d(gzn+1, gzn+2) + · · ·+ d(gzm−1, gzm)

� [λn + λn+1 + · · ·+ λm−1][d(gx0, gx1) + d(gy0, gy1) + d(gz0, gz1)]

� λn

1−λ [d(gx0, gx1) + d(gy0, gy1) + d(gz0, gz1)]

→ 0E as n→∞.

from (P4) it follows that for 0E � c, and for very large n : λn

1−λ [d(gx0, gx1)+d(gy0, gy1)+

d(gz0, gz1)]� c, and by (P3), it implies

[d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm)]� c.

Since,

d(gxn, gxm) � [d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm)],

d(gyn, gym) � [d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm)],

and

d(gzn, gzm) � [d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm)]

again by (P3), d(gxn, gxm) � c, d(gyn, gym) � c and d(gzn, gzm) � c for very large

enough n. Hence {gxn}, {gyn} and {gzn} are Cauchy sequences in g(X). By com-

pleteness of g(X), there exists gx, gy, gz ∈ g(X) such that {gxn} → gx, {gyn} → gy
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and {gzn} → gz as n→∞.

Since {gxn} and {gzn} are nondecreasing and {gyn} is non-increasing, using the con-

ditions (i), (ii) and (iii), we have g(xn) � gx, g(yn) � gy and g(zn) � gz

for all n ≥ 0. If g(xn) = gx, g(yn) = gy and g(zn) = gz for some n ≥ 0, then

gx = g(xn) � g(xn+1) � gx = g(xn), gy � g(yn+1) � g(yn) = gy and gz = g(zn) �

g(zn+1) � gz = g(zn) which implies that gx = g(xn) = F (xn, yn, zn), gy = g(yn) =

F (yn, zn, yn), and gz = g(zn) = F (zn, xn, yn), that is, (xn, yn, zn) is a triplet coin-

cidence point of F and g. Now, we suppose that (gxn, gyn, gzn) 6= (gx, gy, gz) for all

n ≥ 0.

Now we shall show that F (x, y, z) = gx, F (y, z, y) = gy and F (z, x, y) = gz.

For this, consider

d(F (x, y, z), gx) � d(F (x, y, z), gxn+1) + d(gxn+1, gx)

= d(F (x, y, z), F (xn, yn, zn)) + d(gxn+1, gx)

� a1d(gx, gxn)+a2d(F (x, y, z), gx)+a3d(gy, gyn)+a4d(F (xn, yn, zn), gxn)

+a5d(F (x, y, z), gxn) + a6d(F (xn, yn, zn), gx) + d(gxn+1, gx)

= a1d(gx, gxn) + a2d(F (x, y, z), gx) + a3d(gy, gyn) + a4d(F (gxn+1, gxn)

+a5d(F (x, y, z), gxn) + a6d(gxn+1, gxn) + a6d(gxn, gx)

+d(gxn+1, gxn) + d(gxn, gx)

(1− a2− a5)d(F (x, y, z), gx) � (1 + a1 + a5 + a6)d(gxn, gx) + (1 + a4 + a6)d(gxn+1, gxn)

+a3d(gy, gyn)

which further implies that

d(F (x, y, z), gx) � 1 + a1 + a5 + a6
(1− a2 − a5)

d(gx, gxn) + a3
(1− a2 − a5)

d(gy, gyn)
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+ 1 + a4 + a6
(1− a2 − a5)

d(gxn+1, gxn);

since g(xn) → gx, g(yn) → gy and g(zn) → gz, then for 0E � c there exists

N ∈ N such that d(gx, gxn)� (1 + a1 + a5 + a6)
(1− a2 − a5)

c, d(gy, gyn)� (a3)
(1− a2 − a5)

c,

and d(gxn+1, gxn)� (1 + a4 + a6)
(1− a2 − a5)

c and for all n ≥ N.

Thus, d(F (x, y, z), gx)� c.

Now according to (P2) it follows that d(F (x, y, z), gx) = 0E, and F (x, y, z) = gx.

Similarly, we can get F (y, z, y) = gy and F (z, x, y) = gz.

Hence (gx, gy, gz) is tripled coincidence point of mappings F and g.

This completes the proof.

Now we prove the existence and uniqueness of a tripled common fixed point.

Theorem 3.1.1.2 Let (X, d,�) be an ordered cone metric space over a solid cone P.

Let F : X ×X ×X → X and g : X → X be two mappings satisfying the hypothesis of

Theorem 3.1.1.2. Further assume that for every (x, y, z), (x∗, y∗, z∗) ∈ X ×X ×X there

exists (u, v, w) ∈ X ×X ×X such that (F (u, v, w), F (v, w, u), F (w, u, v)) is comparable

to (F (x, y, z), F (y, z, x), F (z, x, y)) and (F (x∗, y∗, z∗), F (y∗, z∗, x∗), (z∗, x∗, y∗)). Then F

and g have a unique triple common fixed point, that is, there exists a unique (u, v, w) ∈

X × X × X such that u = g(u) = F (u, v, w), g(v) = F (v, w, v) and g(w) =

F (w, u, v), provided F and g are w - compatible.

Proof. From Theorem 3.1.1.1, the set of tripled coincidence points of F and g is

nonempty. Suppose (x, y, z) and (x∗, y∗, z∗) are tripled coincidence points of F, that is

g(x) = F (x, y, z), g(y) = F (y, z, y), g(z) = F (z, x, y), g(x∗) = F (x∗, y∗, z∗), g(y∗) =

F (y∗, z∗, y∗) and g(z∗) = F (z∗, x∗, y∗). We will prove that

g(x) = g(x∗), g(y) = g(y∗) and g(z) = g(z∗).

By assumption, there exists (u, v, w) ∈ X×X×X such that (F (u, v, w), F (v, w, u), F (w, u, v))

is comparable to (F (x, y, z), F (y, z, x), F (z, x, y)) and (F (x∗, y∗, z∗), F (y∗, z∗, x∗), (z∗, x∗, y∗)).
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Put u0 = u, v0 = v, w0 = w and choose u1, v1, w1 ∈ X so that g(u1) = F (u0, v0, w0), g(v1) =

F (v0, w0, v0) and g(w1) = F (w0, u0, v0). Then, similarly as in the proof of Theorem

3.1.1.1, we can inductively define sequences {gun}, {gvn} and {gwn} with

g(un+1) = F (un, vn, wn), g(vn+1) = F (vn, wn, vn) and g(wn+1) = F (wn, un, vn) ∀ n.

Further, set x0 = x, y0 = y, z0 = z, x∗0 = x∗, y∗0 = y∗ and z∗0 = z∗ and in a similar

way, define the sequence {gxn}, {gyn}, {gzn} and {gx∗n}, {y∗n}, {z∗n}. Then it is easy to

show that

g(xn)→ F (x, y, z), g(yn)→ F (y, z, y) and g(zn)→ F (z, x, y)

and

g(x∗n)→ F (x∗, y∗, z∗), g(y∗n)→ F (y∗, z∗, y∗) and g(z∗n)→ F (z∗, x∗, y∗)

as n → ∞. Since (gx, gy, gz) = (F (x, y, z), F (y, z, y), F (z, x, y)) = (gx1, gy1, gz1) and

(F (u, v, w), F (v, w, v), F (w, u, v)) = (gu1, gv1, gw1) are comparable, then gx � gu1, gy �

gv1 and gz � gw1. It is easy to show that, similarly, (gx, gy, gz) and (gun, gvn, gwn)

are comparable for all n ≥ 1, that is, gx � gun, gy � gvn and gz � gwn, or vice versa.

Thus from (3.1.5) we have

d(gx, gun+1) = d(F (x, y, z), F (un, vn, wn))

� a1d(gx, gun) + a2d(F (x, y, z, gx)) + a3d(gy, gvn)

+a4d(F (un, vn, wn, gun)) + a5d(F (x, y, z, gun))

+a6d(F (un, vn, wn, gx))

= a1d(gx, gun) + a2d(gx, gx) + a3d(gy, gvn) + a4d(gun+1, gun)

+a5d(gx, gun) + a6d(gun+1, gx).

= a1d(gx1, gun) + a3d(gy, gvn) + a4[d(gun+1, gx)

58



+d(gx, gxn)] + a6d(gun+1, gx).

= (a1 + a4 + a5)d(gx, gun) + a3d(gy, gvn) + (a4 + a6)d(gun+1, gx).

which implies that

(1− a4 − a6)d(gx, gun+1) � (a1 + a4 + a5)d(gx, gun) + a3d(gy, gvn). (3.1.21)

Similarly,

(1− a4 − a6)d(gy, gvn+1) � (a1 + a4 + a5)d(gy, gvn) + a3d(gz, gwn). (3.1.22)

(1− a4 − a6)d(gz, gwn+1) � (a1 + a4 + a5)d(gz, gwn) + a3d(gx, gun). (3.1.23)

Adding up (3.1.21, 3.1.22) and (3.1.23) we obtain that

(1− a4 − a6)[d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)]

� (a1 + a4 + a5)[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

+a3[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

= (a1 + a3 + a4 + a5)[d(gx, gun) + d(gy, gvn) + d(gz, gwn)] (3.1.24)

Now stating from d(gun+1, gx) = d(F (un, vn, wn), F (x, y, z)) we get that

d(gun+1, gx) = d(F (un, vn, wn, F (x, y, z))

� a1d(gun, gx) + a2d(F (un, vn, wn, gun)) + a3d(gvn, gy)

+a4d(F (x, y, z, gx)) + a5d(F (un, vn, wn, gx))

+a6d(F (x, y, z, gun))

= a1d(gun, gx) + a2d(gun+1, gun) + a3d(gvn, gy) + a4d(gx, gx)
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+a5d(gun+1, gx) + a6d(gx, gun))

= a1d(gun, gx) + a2[d(gun+1, gx) + d(gx, gun)] + a3d(gvn, gy)

+a4d(gx, gx) + a5d(gun+1, gx) + a6d(gx, gun))

(1− a2 − a5)d(gun+1, gx) = (a1 + a2 + a6)d(gx, gun) + a3d(gvn, gy) (3.1.25)

Similarly,

(1− a2 − a5)d(gvn+1, gy) = (a1 + a2 + a6)d(gy, gvn) + a3d(gwn, gz) (3.1.26)

(1− a2 − a5)d(gwn+1, gz) = (a1 + a2 + a6)d(gz, gwn) + a3d(gun, gx) (3.1.27)

Adding (3.1.25), (3.1.26) and (3.1.27) we obtain that

(1− a2 − a5)[d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)]

� (a1 + a2 + a6)[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

+a3[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

= (a1 + a2 + a3 + a6)[d(gx, gun) + d(gy, gvn) + d(gz, gwn)] (3.1.28)

Now adding (3.1.24) and (3.1.28) we get

[d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)]

� (
2a1 + a2 + 2a3 + a4 + a5 + a6

2− a2 − a4 − a5 − a6
)

[d(gx, gun) + d(gy, gvn) + d(gz, gwn)] (3.1.29)

with 0 ≤ λ < 1. Where λ = 2a1 + a2 + 2a3 + a4 + a5 + a6
2− a2 − a4 − a5 − a6 .

Since
∑6

i=1 ai < 1. using relation (3.1.29) n - times, we obtain
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[d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)] � λ[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

� λ2[d(gx, gun−1) + d(gy, gvn−1) + d(gz, gwn−1)]

...

� λn[d(gx, gu0) + d(gy, gv0) + d(gz, gw0)].

Then [d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)]→ 0E as n→∞.

Thus d(gx, gun+1) = d(gy, gvn+1) = d(gz, gwn+1)→ 0E as n→∞. Since 0 ≤ λ < 1.

Hence [d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)] � c for each c ∈ intP and large n.

Since 0E � d(gx, gun+1) � [d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)], it follows by

(P3) that d(gun+1, gx) � c, for n large enough and so {gun} → gx when n → ∞.

Similarly, {gvn+1} → gy and {gwn+1} → gz. By the same procedure one can show

that {gu∗n+1} → gx∗, {gv∗n+1} → gy∗ and {gw∗n+1} → gz∗. By the uniqueness of the

limit, it follows that gx = gx∗, gy = gy∗ and gz = gz∗. as n→∞. Hence (gx, gy, gz)

is the unique tripled point of coincidence of F and g.

Now we show that F and g have a unique common tripled fixed point. For this, let

gx = u. Then we have u = gx = F (x, y, z). By w - compatibility of F and g, we have

gu = g(gx) = g(F (x, y, z)) = F (gx, gy, gz) = F (u, v, w),

gv = g(gy) = g(F (y, z, y)) = F (gy, gz, gy) = F (v, w, v), and

gw = g(gz) = g(F (z, x, y)) = F (gz, gy, gx) = F (w, u, v).

Hence the triple (u, v, w) is also triple coincidence point of F and g. Thus we have

gu = gx, gv = gy and gw = gz.

Therefore

u = gu = F (u, v, w), v = gv = F (v, w, v) and w = F (w, u, v).

Thus (u, v, w) is common triple fixed point of F and g.
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To prove the uniqueness, let (u∗, v∗, w∗) be any common triple fixed point of F and g.

Then u∗ = gu = F (u∗, v∗, w∗), v∗ = gv∗ = F (v∗, w∗, v∗) and w∗ = F (w∗, u∗, v∗).

Since the (u∗, v∗, w∗) is a triple coincidence point of F and g.

We have

gu∗ = gx, gv∗ = gy and gw∗ = gz.

Thus

u∗ = gu∗ = gx = u, v∗ = gv∗ = gy = v and w∗ = gw∗ = gz = w.

Hence the common triple fixed point is unique.

This completes the proof.

As an immediate consequence of above theorem 3.1.1.1 we have the following corollary:

Corollary 3.1.1.3. Let (X, d,�) be an ordered cone metric space over a solid cone

P. Let F : X × X × X → X and g : X → X be mappings such that F has the

mixed g - monotone property on X and there exists three elements x0, y0, z0 ∈ X with

gx0 � F (x0, y0, z0), gy0 � F (y0, z0, y0) and gz0 � F (z0, y0, x0). Suppose further that F ,

g satisfy that

d(F (x, y, z), F (u, v, w)) � αd(gx, gu) + βd(gy, gv) + γd(gz, gw) + δd(F (x, y, z), gu),

for all (x, y, z), (u, v, w) ∈ X with (gx � gu, gy � gv and gz � gw), where

α, β, γ, δ ≥ 0 and α + β + γ + δ < 1. Further suppose

1. F (X ×X ×X) ⊆ g(X);

2. g(X) is a complete subspaces of X.

Also, suppose that if X has the following properties:
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(i) {xn} is a non - decreasing sequence in X such that xn → x, then xn � x for all

n ∈ N,

(ii) {yn} is a non - increasing sequence in X such that yn → y, then yn � y for all

n ∈ N,

(iii) {zn} is a non - decreasing sequence in X such that zn → z, then zn � z for all

n ∈ N,

then there exists x, y, z ∈ X such that g(x) = F (x, y, z), g(y) = F (y, x, y) and g(z) =

F (z, y, x), that is, F and g have tripled coincidence point in X.

Similarly corollary can be stated as a consequence of Theorem 3.1.1.1. Putting g = iX

(the identity map) then we get the following corollary.

Corollary 3.1.1.4. Let (X, d,�) be complete ordered cone metric space over a solid

cone P. Let

F : X × X × X → X be a mappings having the mixed monotone property on X and

there exists three elements x0, y0, z0 ∈ X with x0 � F (x0, y0, z0), y0 � F (y0, z0, y0) and

z0 � F (z0, y0, x0). Suppose further that F , g satisfy

d(F (x, y, z), F (u, v, w)) � a1d(x, u) + a2d(F (x, y, z), x) + a3d(y, v)

+ a4d(F (u, v, w), u) + a5d(F (x, y, z), u) + a6d(F (u, v, w), x),

for all (x, y, z), (u, v, w) ∈ X with (x � u, y � v and z � w), where ai ≥ 0, for

i = 1, 2, ..., 7 and
∑6

i=1 ai < 1. Also suppose that if X has the following properties:

(i) {xn} is a non - decreasing sequence in X such that xn → x, then xn � x for all

n ∈ N,

(ii) {yn} is a non - increasing sequence in X such that yn → y, then yn � y for all

n ∈ N,
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(iii) {zn} is a non - decreasing sequence in X such that zn → z, then zn � z for all

n ∈ N,

then there exists x, y, z ∈ X such that x = F (x, y, z), y = F (y, x, y) and z =

F (z, y, x), that is, F and g have tripled coincidence point in X.

Now, we furnish the following example to support our Theorem 3.1.1.1 and 3.1.1.2.

Example 3.1.1.5. Let X = [0, 1] be taken with the standard order and with the cone

metric given by d(x, y) = (| x−y |, α | x−y |) for fixed α > 0. (Here E = R2 and P =

{(x, y) ∈ E : x, y ≥ 0} is a solid cone.) Consider the mappings F : X ×X ×X → X

and g : X → X given by

F (x, y, z) =


1
3
(x2 − y2 − z2), if x > y > z

0 if otherwise;

and g(x) = x2,

and the contractive condition taken with a1 = a3 = 1
8
, a2 = a4 = 1

4
and a5 = a6 = 0.

We will check that this condition is satisfied for all x, y, z, u, v, w ∈ X with (x � u, y �

v and z � w). The other conditions of Theorems are obviously satisfied. Consider

the following possibilities.

Case1. x > y > z and u > v > w. (and hence u ≥ x > y ≥ v > w ≥ z). Then

d(F (x, y, z), F (u, v, w)) = d(1
3
(x2 − y2 − z2), 1

3
(u2 − v2 − w2)) = (L, αL)

where

L =
1

3
(u2 − x2 + v2 − y2 + z2 − w2),

and

1
8
d(gx, gu) + 1

4
d(F (x, y, z), gx) + 1

8
d(gy, gv) + 1

4
d(F (u, v, w), gu) = (D,αD),

where D = 1
8
(u2 − x2) + 1

12
(2x2 + y2 + z2)) + 1

8
(y2 − v2) + 1

12
(2u2 + v2 + w2)) clearly

L ≤ D, Hence contraction condition (3.1.5) holds true.
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Case2. x > y > z and u > w > v (and hence u ≥ x > y ≥ w > v ≥ z). Then

d(F (x, y, z), F (u, v, w)) = d(1
3
(x2 − y2 − z2), 0) = (L, αL)

where

L =
1

3
(x2 − y2 − z2),

and

1
8
d(gx, gu) + 1

4
d(F (x, y, z), gx) + 1

8
d(gy, gv) + 1

4
d(0, gu) = (D,αD),

where

D =
1

8
(u2 − x2) +

1

12
(2x2 + y2 + z2)) +

1

8
(y2 − v2) +

1

4
u2

clearly L ≤ D, Hence contraction condition (3.1.5) holds true.

Case3. x > y > z and any other combination between u, v, w other than u > v > w.

Then

d(F (x, y, z), F (u, v, w)) = d(1
3
(x2 − y2 − z2), 0) = (L, αL)

where

L =
1

3
(x2 − y2 − z2),

and

1
8
d(gx, gu) + 1

4
d(F (x, y, z), gx) + 1

8
d(gy, gv) + 1

4
d(0, gu) = (D,αD),

where

D =
1

8
(u2 − x2) +

1

12
(2x2 + y2 + z2)) +

1

8
(y2 − v2) +

1

4
u2

clearly L ≤ D, Hence contraction condition (3.1.5) holds true.

Case4. u > v > w and any other combination between x, y, z other than x > y > z.

This case is treated analogously to the previous one.

Case5. Any other combination between x, y, z other than x > y > z and also in be-

tween u, v, w other than u > v > w. Then

d(F (x, y, z), F (u, v, w)) = d(0, 0) = 0E and the contractive condition is trivially satis-

fied.
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Thus all the condition of Theorem 3.1.1.1 and 3.1.1.2 are satisfied. The mapping F and

g have a unique common tripled fixed point (0, 0, 0).
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Chapter 4
SOME RESULTS IN FUZZY METRIC SPACES

4.1

We shall divided this chapter into three parts.

� In section - I, we have proved tripled coincidence point theorem and fixed point

theorems for compatible maps.

� In section - II, we have proved theorem by using (f; g)-reciprocally continuity

under Generalized (ϕ, ψ)-weak contractions maps, and

� Section - III, will be of Presič type contraction maps for obtaining common fixed

points.

Now we are ready to discuss in detail about of the fuzzy metric spaces.

Zadeh([94]) of Univ. of California, Berkeley introduced the concept of fuzzy sets in 1965.

There are many viewpoints of the notion of the metric space in fuzzy topology.We can

divide them in two category:

(i). First category involves those results in which a fuzzy metric on a set X is treated

as a map d : X ×X → R+, where X represents the totality of all fuzzy points of a set

∗Published in
“Generalized (φ, ψ)-weak contractions involving (f, g)-reciprocally continuous maps in fuzzy metric

spaces,” Annals of Fuzzy Mathematics and Informatics Volume 5, No. 1, (January 2013), pp. 45 -57,
http://www.afmi.or.kr

∗“A common fixed point theorem of presic type for three maps in fuzzy metric space”Annual Review of
Chaos Theory, Bifurcations and Dynamical Systems Vol. 4, (2013) 30-36, www.arctbds.com. Copyright
(c) 2013 (ARCTBDS). ISSN 2253 - 0371.

67



and satisfy some axioms which are analogous to the ordinary metric axioms. In such an

approach numerical distances are set up between fuzzy objects.

(ii). Second group studied those results in which the distance between objects is fuzzy

and the objects themselves may or may not be fuzzy.

Erceg ([104]), Kaleva and Seikkala ([107]) and Kramosil and Michalek ([75])discussed

in length about fuzzy metric spaces. Grabiec ([105]) proved a fixed point theorem

in fuzzy metric space. Subramanyam ([123]) generalized Grabiec’s result for a pair

of commuting maps in the pattern of Jungck 1976 ([52]). George and Veermani([11])

modified the concept of fuzzy metric space and defined a Hausdorff topology on this

fuzzy metric space which have some important applications in quantum particle physics

particularly in connection with both string and E - infinity theory. Also shown that

every metric induces a fuzzy metric in Hausdroff topology.

Fuzzy Metric Spaces:

We recall the following definitions and lemmas for our results in fuzzy metric spaces.

Definition 4.1.1([94]) A fuzzy set A in X is a function with domain X and values in

[0, 1].

Definition 4.1.2([76]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous

t-norm if it satisfies the following conditions:

1. ∗ is associative and commutative;

2. ∗ is continuous;

3. a ∗ 1 = a for every a ∈ [0, 1];

4. a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 4.1.3([11]) A triplet (X,M, ∗) is said to be a fuzzy metric space, if X is an

arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X×X×(0,∞) satisfying
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the following conditions;

for all x, y, z ∈ X and t, s > 0;

(M1) M(x, y, t) > 0,

(M2) M(x, y, t) = 1 if and only if x = y,

(M3) M(x, y, t) = M(y, x, t),

(M4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

(M5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

In view of (M1) and (M2), it is worth pointing out that 0 < M(x, y, t) < 1 for all t > 0,

provided x 6= y. In view of Definition 4.1.3, George and Veermani ([11]) introduced

the concept of Hausdorff topology on a fuzzy metric spaces and show that every metric

space induces a fuzzy metric space.

In fact, we can fuzzify metric spaces into fuzzy metric spaces in a natural way as it can

be shown by the following example. In other words, every metric induces a fuzzy metric.

Example 4.1.4 Let (X, d) be a metric space and define a ∗ b = ab for all a, b ∈ [0, 1].

Define M(x, y, t) = t
t+d(x,y)

for all x, y ∈ X and t > 0, then (X,M, ∗) is a fuzzy metric

space, called standard fuzzy metric space induced by (X, d).

Definition 4.1.5([11]) Let (X,M, ∗) be a fuzzy metric space, then

1. a sequence {xn} in X is said to be convergent to x if limn→∞M(xn, x, t) = 1, for all

t > 0;

2. a sequence {xn} in X is said to be a Cauchy sequence, if for a given ε > 0, there

exists n0 ∈ N, such that M(xn, xm, t) > 1− ε, for all t > 0 and n,m ≥ n0;
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3. a fuzzy metric space (X,M, ∗) is said to be complete if and only if every Cauchy

sequence in X is convergent.

4.2 Section I

Sedghi, Altun and Shobe([152]) gave a coupled fixed point theorem for contractions in

fuzzy metric spaces and Fang([83]) gave some common fixed point theorems under φ -

contractions for compatible and weakly compatible mappings in Menger probabilistic

metric spaces. Many authors have proved fixed point theorems in (intuitionistic) fuzzy

metric spaced or probabilistic metric spaces. Here we shall follow the proof of Hu([172])

for obtaining coincidence and fixed points.

We recall the following results:

Definition 4.2.1([117]) Let sup0<t<14(t, t) = 1. A t - norm 4 is said to be of H-type

if the family of functions {4m(t)}∞m=1 is equicontinuous at t = 1, where

41(t) = t4t, 4m+1(t) = t4(4m(t)), m = 1, 2, ..., t and ∈ [0, 1]. (4.2.1)

The t - norm 4M = min is an example of t - norm of H - type, but there are some other

t - norms 4 of H - type ([117]).

Obviously, 4 is a H - type t norm if and only if for any λ ∈ (0, 1), there exists δ(λ) ∈

(0, 1) such that 4m(t) > 1− λ for all m ∈ N, when t > 1− δ.

Remark 4.2.2(see [105]).

(i) For all x, y ∈ X,M(x, y, .) is non - decreasing.
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(ii) It is easy to prove that if xn → x, yn → y, tn → t, then

limn→∞M(xn, yn, tn) = M(x, y, t). (4.2.2)

(iii) In a fuzzy metric space (X,M, ∗), whenever M(x, y, t) > 1− r for

x, y ∈ X, t > 0, 0 < r < 1, we can find a t0, 0 < t0 < t such that M(x, y, t0) > 1−r.

(iv) For any r1 > r2, we can find an r3 such that r1 ∗ r3 ≥ r2 and for any r4 we can find

r5 such that r3 ∗ r5 ≥ r4, where r1, r2, r3, r4, r5 ∈ (0, 1)).

Definition 4.2.3([152]) Let (X,M, ∗) be a fuzzy metric space and M is said to satisfy

the n - property on X ×X × (0,∞) if

limn→∞[M(x, y, knt)]n
p

= 1, (4.2.3)

whenever x, y ∈ X, k > 1 and p > 0.

Lemma 4.2.4 Let (X,M, ∗) be a fuzzy metric space. If M satisfies the n - property,

then

limt→+∞M(x, y, t) = 1, ∀x, y ∈ X. (4.2.4)

Proof. If not, since M(x, y, .) is non - decreasing and 0 ≤ M(x, y, .) ≤ 1, there exists

x0, y0 ∈ X such that limt→+∞M(x0, y0, t) = λ < 1, then for k > 1, knt → +∞ as

n→∞ and t > 0. We get limn→∞[(M(x0, y0, k
nt))n

p
] = 0, which is a contraction.

Remark 4.2.5 Condition (4.2.4) cannot guarantee the n - property. For this see the

following example.

Example 4.2.6([172]) Let (X, d) be an ordinary metric space, a ∗ b ≤ ab for all

a, b ∈ [0, 1], and ψ be define as following:
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ψ(t) =

 α
√
t, if 0 < t ≤ 4,

1− 1
Int
, if t > 4,

(4.2.5)

where α = (1
2
)(1− 1

In4
). Then ψ(t) is continuous and increasing in (0,∞),

ψ(t) ∈ (0, 1) and limt→+∞ ψ(t) = 1. Let

M(x, y, t) = [ψ(t)]d(x,y), ∀x, y ∈ X, t > 0, (4.2.6)

then (X,M, ∗) is a fuzzy metric space and

lim
t→+∞

M(x, y, t) = lim
t→+∞

[ψ(t)]d(x,y) = 1, ∀ x, y ∈ X, t > 0, (4.2.7)

But for any x 6= y, p = 1, k > 1, t > 0,

lim
n→∞

[M(x, y, knt)]n
p

= lim
n→∞

[(ψ(knt))]d(x,y).n
p

= lim
n→∞

[1− 1

In(knt)
]n.d(x,y) = e

−d(x,y)
Ink 6= 1.

(4.2.8)

Now, we recall the following:

Φ = {φ : R+ → R+}, where R+ = [0,∞) and each φ ∈ Φ satisfies the following

conditions:

(φ(1)) φ is non decreasing;

(φ(2)) φ is upper semi - continuous from the right;

(φ(3)) Σ∞n=0φ
n(t) < +∞ for all t > 0 where φn+1(t) = φ(φn(t)), n ∈ N.

It is easy to prove that, if φ ∈ Φ, then φ(t) < t for all t > 0.

Lemma 4.2.7([83]) Let (X,M, ∗) be a fuzzy metric space, where ∗ is a continuous t -
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norm of H - type. If there exists φ ∈ Φ such that

M(x, y, φ(t)) ≥M(x, y, t), for all t > 0, (4.2.9)

then x = y.

In this context, we slightly modify the concept of tripled fixed point introduced by

Brinde and Borcut([157]) in POMS into fuzzy metric space we also introduce the fol-

lowing notion of tripled fixed point and tripled coincidence point.

Definition 4.2.8 Let (X,M, ∗) be a nonempty fuzzy metric space. An element (x, y, z) ∈

X × X × X is said to be tripled fixed point of the map F : X × X × X → X if

F (x, y, z) = x, F (y, x, z) = y and F (z, y, x) = z.

Definition 4.2.9 Let (X,M, ∗) be a nonempty fuzzy metric space. An element (x, y, z) ∈

X × X × X is said to be tripled coincidence point of the maps F : X × X × X → X

and g : X → X if F (x, y, z) = g(x), F (y, x, z) = g(y) and F (z, y, x) = g(z).

Now we define the concept of compatibility for a pair of maps F : X × X × X → X

and g : X → X.

The notion introduce by us is analogous to the notion of Hu([172]) in the setting of

Fuzzy Metric Spaces.

Definition 4.2.10 The maps F : X × X × X → X and g : X → X are said to be

compatible pair of maps if

lim
n→∞

M(g(F (xn, yn, zn)), F (g(xn), g(yn), g(zn)), t) = 1,

lim
n→∞

M(g(F (yn, xn, zn)), F (g(yn), g(xn), g(zn)), t) = 1,
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and

lim
n→∞

M(g(F (zn, yn, xn)), F (g(zn), g(yn), g(xn)), t) = 1,

whenever {xn}, {yn} and {zn} are sequences in X, such that

lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = x, lim
n→∞

F (yn, xn, zn) = lim
n→∞

g(yn) = y

lim
n→∞

F (zn, yn, xn) = lim
n→∞

g(zn) = z,

for all x, y, z ∈ X and t > 0.

Definition 4.2.11 The mappings F : X ×X ×X → X and g : X → X are said to be

commutative if

g(F (x, y, z)) = F (gx, gy, gz),

for all x, y ∈ X.

Remark 4.2.12 If F and g are commutative pair of maps then they are compatible

pair of maps.

4.2.1 Main Results

Now, we prove some results of tripled coincidence point theorem under weaker condi-

tions, which generalizes the result of Hu([172]).

Throughout this section:

[M(x, y, t)]n = M(x, y, t) ∗M(x, y, t) ∗ ... ∗M(x, y, t),︸ ︷︷ ︸
n−times

(4.2.10)

for all n ∈ N.

Theorem 4.2.1.1 Let (X,M, ∗) be a complete FM - Space, where ∗ is a continuous t
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- norm of H - type satisfying (4.2.4). Let F : X × X × X → X and g : X → X be

mappings such that there exists φ ∈ Φ satisfying

M(F (x, y, z), F (u.v, w), φ(t)) ≥M(g(x), g(u), t) ∗M(g(y), g(v), t) ∗M(g(z), g(w), t),

(4.2.11)

for all x, y, z, u, v, w ∈ X, t > 0. Suppose that

(a) F (X ×X ×X) ⊆ g(X);

(b) g is continuous;

(c) F and g are compatible.

Then there exists x, y, z ∈ X such that g(x) = F (x, y, z), g(y) = F (y, x, z), g(z) =

F (z, y, x) i.e., F and g have a triple coincidence point in X.

Proof. Let x0, y0, z0 ∈ X be arbitrary points in X. Since F (X ×X ×X) ⊆ g(X), then

there exists x1, y1, z1 ∈ X such that

g(x1) = F (x0, y0, z0), g(y1) = F (y0, x0, z0), and g(z1) = F (z0, y0, x0).

Continuing in this way, we can construct sequences {xn}, {yn} and {zn} in X such that

g(xn+1) = F (xn, yn, zn), g(yn+1) = F (yn, xn, zn) and g(zn+1) = F (zn, yn, xn),

(4.2.12)

for all n ≥ 0.

We shall divided the proof in two steps:

Step I: First we show that {gxn}, {gyn} and {gzn} are Cauchy sequences. Since ∗ is a

t - norm of H - type, then for any λ > 0, there exists a µ > 0 such that

(1− µ) ∗ (1− µ) ∗ ... ∗ (1− µ)︸ ︷︷ ︸
k−times

≥ 1− λ, (4.2.13)
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for all k ∈ N.

Since M(x, y, .) is continuous and limt→+∞M(x, y, t) = 1 for all x, y ∈ X, there exists

t0 > 0 such that 
M(gx0, gx1, t0) ≥ 1− µ,

M(gy0, gy1, t0) ≥ 1− µ,

M(gz0, gz1, t0) ≥ 1− µ.

(4.2.14)

On the other hand, since φ ∈ Φ, by condition (φ(3)) we have
∑∞

n=1 φ
n(t0) < ∞. Then

for any t > 0,∃ n0 ∈ N such that

t >

∞∑
k=n0

φk(t0) (4.2.15)

From condition (4.2.11), we have

M(gx1, gx2, φ(t0)) = M(F (x0, y0, z0), F (x1, y1, z1), φ(t0))

≥M(gx0, gx1, t0) ∗M(gy0, gy1, t0) ∗M(gz0, gz1, t0).

M(gy1, gy2, φ(t0)) = M(F (y0, x0, z0), F (y1, x1, z1), φ(t0))

≥M(gy0, gy1, t0) ∗M(gx0, gx1, t0) ∗M(gz0, gz1, t0).

and

M(gz1, gz2, φ(t0)) = M(F (z0, y0, x0), F (z1, y1, x1), φ(t0))

≥M(gz0, gz1, t0) ∗M(gy0, gy1, t0) ∗M(gx0, gx1, t0)

Similarly, we can also get

M(gx2, gx3, φ
2(t0)) = M(F (x1, y1, z1), F (x2, y2, z2), φ

2(t0))

≥M(gx1, gx2, φ(t0)) ∗M(gy1, gy2, φ(t0)) ∗M(gz1, gz2, φ(t0))

= M(F (x0, y0, z0), F (x1, y1, z1), φ(t0))

76



∗M(F (y0, x0, z0), F (y1, x1, z1), φ(t0))

∗M(F (z0, y0, x0), F (z1, y1, x1), φ(t0))

≥M(gx0, gx1, t0) ∗M(gy0, gy1, t0) ∗M(gz0, gz1, t0)

∗M(gy0, gy1, t0) ∗M(gx0, gx1, t0) ∗M(gz0, gz1, t0)

∗M(gz0, gz1, t0) ∗M(gy0, gy1, t0) ∗M(gx0, gx1, t0)

= [M(gx0, gx1, t0)]
3 ∗ [M(gy0, gy1, t0)]

3 ∗ [M(gz0, gz1, t0)]
3.

M(gy2, gy3, φ
2(t0)) = M(F (y1, x1, z1), F (y2, x2, z2), φ

2(t0))

≥M(gy1, gy2, φ(t0)) ∗M(gx1, gx2, φ(t0)) ∗M(gz1, gz2, φ(t0))

= M(F (y0, x0, z0), F (y1, x1, z1), φ(t0))

∗M(F (x0, y0, z0), F (x1, y1, z1), φ(t0))

∗M(F (z0, y0, x0), F (z1, y1, x1), φ(t0))

≥M(gy0, gy1, t0) ∗M(gx0, gx1, t0) ∗M(gz0, gz1, t0)

∗M(gx0, gx1, t0) ∗M(gy0, gy1, t0) ∗M(gz0, gz1, t0)

∗M(gz0, gz1, t0) ∗M(gy0, gy1, t0) ∗M(gx0, gx1, t0)

= [M(gy0, gy1, t0)]
3 ∗ [M(gx0, gx1, t0)]

3 ∗ [M(gz0, gz1, t0)]
3.

M(gz2, gz3, φ
2(t0)) ≥ [M(gz0, gz1, t0)]

3 ∗ [M(gy0, gy1, t0)]
3 ∗ [M(gx0, gx1, t0)]

3.

Continuing in this way, we get

M(gxn, gxn+1, φ
n(t0)) ≥ [M(gx0, gx1, t0)]

3n−1∗[M(gy0, gy1, t0)]
3n−1∗[M(gz0, gz1, t0)]

3n−1
,
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M(gyn, gyn+1, φ
n(t0)) ≥ [M(gy0, gy1, t0)]

3n−1 ∗[M(gx0, gx1, t0)]
3n−1 ∗[M(gz0, gz1, t0)]

3n−1
,

M(gzn, gzn+1, φ
n(t0)) ≥ [M(gz0, gz1, t0)]

3n−1 ∗ [M(gy0, gy1, t0)]
3n−1 ∗ [M(gx0, gx1, t0)]

3n−1
,

So, from (4.2.14) and (4.2.15), for m > n ≥ n0, we have

M(gxn, gxm, t0) ≥M(gxn, gxm,
∞∑

k=n0

φk(t0))

≥M(gxn, gxm,
m−1∑
k=n

(t0))

≥M(gxn, gxn+1, φ
n(t0)) ∗M(gxn+1, gxn+2, φ

n+1(t0))

∗ · · · ∗M(gxm−1, gxm, φ
m−1(t0))

≥ [(M(gy0, gy1, t0))
3]n−1 ∗ [(M(gx0, gx1, t0)

3n−1 ∗ [M(gz0, gz1, t0)]
3n−1

∗[M(gy0, gy1, t0)]
3n ∗ [M(gx0, gx1, t0)]

3n ∗ [M(gz0, gz1, t0)]
3n

∗ · · ·∗[M(gy0, gy1, t0)]
3m−2∗[M(gx0, gx1, t0)]

3m−2∗[M(gz0, gz1, t0)]
3m−2

= [(M(gy0, gy1, t0))
1
2 ]3

n−1(3m−n−1) ∗ [(M(gx0, gx1, t0)
1
2 ]3

n−1(3m−n−1)

∗[(M(gz0, gz1, t0))
1
2 ]3

n−1(3m−n−1)

≥ (1− µ) ∗ (1− µ) ∗ ... ∗ (1− µ)

≥ 1− λ

which implies that

M(gxn, gxm, t) > 1− λ, (4.2.16)

for all m,n ∈ N with m > n ≥ n0 and t > 0. So {g(xn)} is a cauchy sequence. Similarly,

we have {g(yn)} and {g(zn)} are Cauchy sequences.

Step II: Here we shall prove that g and F have a tripled coincidence point. Since X is

complete, there exists x, y, z ∈ X such that
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limn→∞F (xn, yn, zn) = limn→∞g(xn) = x,

limn→∞F (yn, xn, zn) = limn→∞g(yn) = y,

limn→∞F (zn, yn, xn) = limn→∞g(zn) = z,

Suppose F and g are compatible, so we have

limn→∞M(gF (xn, yn, zn), F (gxn, gyn, gzn), t) = 1,

limn→∞M(gF (yn, xn, zn), F (gyn, gxn, gzn), t) = 1,

limn→∞M(gF (zn, yn, xn), F (gzn, gyn, gxn), t) = 1.

∀ t > 0,

Now we prove that g(x) = F (x, y, z), g(y) = F (y, x, z) and g(z) = F (z, y, x)

Now by condition (4.2.11) and (4.2.12), we have

M(gx, F (x, y, z), φ(t)) ≥M(ggxn+1, F (x, y, z), φ(k1t)) ∗M(gx, ggxn+1, φ(t)− φ(k1t))

= M(gF (xn, yn, zn), F (x, y, z), φ(k1t))∗M(gx, ggxn+1, φ(t)−φ(k1t))

≥M(gF (xn, yn, zn), F (gxn, gyn, gzn), φ(k1t)− φ(k2t))

∗M(F (gxn, gyn, gzn), F (x, y, z), φ(k2t))

∗M(gx, ggxn+1, φ(t)− φ(k1t))

≥M(gF (xn, yn, zn), F (gxn, gyn, gzn), φ(k1t)− φ(k2t))

∗M(ggxn, gx, k2t) ∗M(ggyn, gy, k2t)

∗M(ggzn, gz, k2t) ∗M(gx, ggxn+1, φ(t)− φ(k1t)),

∀ 0 < k2 < k1 < 1. Since g is continuous and {g, F} are compatible pair and letting

n→∞, then we have M(gx, F (x, y, z), φ(t)) ≥ 1, implies gx = F (x, y, z).

Similarly we can get gy = F (y, x, z) and gz = F (z, y, x).
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Hence we have shown that F and g have triple coincidence point.

As an immediate consequence of the above theorem, we have the following corollaries:

Corollary 4.2.1.2 Let (X,M, ∗) be a complete FM - Space, where ∗ is a continuous t

- norm of H - type satisfying (4.2.4). Let F : X ×X ×X → X and there exists φ ∈ Φ

such that

M(F (x, y, z), F (u.v, w), φ(t)) ≥M(x, u, t) ∗M(y, v, t) ∗M(z, w, t), (4.2.17)

for all x, y, z, u, v, w ∈ X, t > 0. Then there exits x, y, z ∈ X such that

x = F (x, y, z), y = F (y, x, z), z = F (z, y, x) i.e., F have a common tripled fixed point

in X.

Corollary 4.2.1.3([152]) Let a ∗ b ≥ ab for all a, b ∈ [0, 1] and (X,M, ∗) be a complete

FM - Space such that M has n - property. Let F : X ×X ×X → X and g : X → X be

two function such that

M(F (x, y, z), F (u.v, w), kt) ≥M(gx, gu, t) ∗M(gy, gv, t) ∗M(gz, gw, t), (4.2.18)

for all x, y, z, u, v, w ∈ X, where 0 < k < 1, F (X×X×X) ⊂ g(X) and g is continuous

and commutes with F.

Then there exists triple coincidence point (x, y, z) ∈ X such that

g(x) = F (x, y, z), g(y) = F (y, x, z), g(z) = F (z, y, x).

Now we are ready to give an example which validate our main theorem:

Example 4.2.1.4 Let X = [−2, 2], a ∗ b = ab for all a, b ∈ [0, 1]. ψ is defined as (4.2.5).

Let

M(x, y, t) = [ψ(t)]|x−y|,
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for all x, y ∈ [0, 1]. Then (X,M, ∗) is a complete FM - space.

Let φ(t) = t
2
, g(x) = x and F : X ×X ×X → X be defined as

F (x, y, z) =
x+ y + z

4
∀x, y ∈ X.

Thus F satisfies all the condition of Theorem 4.2.1.1, and the points (0, 0, 0) are tripled

coincidence points of g and F.

It is easy to see that F (X ×X ×X) = [−3
2
, 3
2
],

M(F (x, y, z), F (u, v, w), φ(t)) = [ψ(φ(t))]
|x−u+y−v+z−w|

4 , (4.2.19)

For all t > 0 and x, y ∈ [−2, 2]. The condition (4.2.17) is equivalent to

[ψ(
t

2
)]
|x−u+y−v+z−w|

4 ≥ [ψ(t)]|x−u| · [ψ(t)]|y−v| · [ψ(t)]|z−w| (4.2.20)

Since ψ ∈ (0, 1), we can get

[ψ(
t

2
)]
|x−u+y−v+z−w|

4 ≥ [ψ(
t

2
)]
|x−u|

4 · [ψ(
t

2
)]
|y−v|

4 · [ψ(
t

2
)]
|z−w|

4 (4.2.21)

From (4.2.20), we only need to verify the following:

[ψ(
t

2
)]
|x−u|

4 ≥ [ψ(t)]|x−u| (4.2.22)

that is,

ψ(
t

2
) ≥ [ψ(t)]4∀t > 0. (4.2.23)

Now, we consider the following cases.

81



Case 1: (0 < t ≤ 4). Then (4.2.23) is equivalent to

α

√
t

2
≥ (α

√
(t))4, (4.2.24)

and it can be easily to verify.

Case 2: (t ≥ 8). Then (4.2.23) is equivalent to

1− 1

In t
2

≥ (1− 1

Int
)4 (4.2.25)

equivalent is

4In3t · In t
2

+ 4Int · In t
2
≥ In4t+ 6In2t · In t

2
+ In

t

2
(4.2.26)

since

In4t− 4In3t · In t
2
− 4Int · In t

2
+ 6In2t · In t

2
+ In4 t

2
− In4 t

2
+ In

t

2
≤ 0, (4.2.27)

hods for all t ≥ 8. So (4.2.23) holds for t ≥ 8.

Case 3: (4 < t < 8). Then (4.2.23) is equivalent to

α

√
t

2
≥ (1− 1

Int
)4 (4.2.28)

Let t = ex, we only need to verify

α√
2
e

x
2 − (1− 1

x
)4 ≥ 0, (4.2.29)

for all x that 2In2 < x < 3In2. We can verify it holds.

Hence it is verified that the functions F, g, φ satisfy all the conditions of Theorem 4.2.1.1

82



and (0, 0, 0) are the triple coincidence point of F and g in X.

4.3 Section II

In this section, we recall the following definitions.

In 1984, Khan, Swaleh and Sessa ([116]) have introduced the concept of an altering

distance function in metric spaces in the following manner:

Definition 4.3.1 A function ϕ : [0,∞) → [0,∞) is an altering distance function, if

ϕ(t) is monotone non-decreasing, continuous and ϕ(t) = 0 iff t = 0.

Now we introduce the notion of (f, g)-reciprocal continuity in Fuzzy Metric Space:

Definition 4.3.2 Let f and g be self-maps of a fuzzy metric space (X,M, ∗). The

maps f and g are said to be (f, g)-reciprocally continuous iff limn→∞ ff(xn) = fu and

limn→∞ gg(xn) = gu, whenever {xn} is a sequence in X such that limn→∞ f(xn) =

limn→∞ g(xn) = u for some u ∈ X.

In 1994, Mishra, Sharma and Singh [148] have introduced the concept of compatible

maps in fuzzy metric spaces which follows:

Definition 4.3.3 Let f and g be self-maps of a fuzzy metric space (X,M, ∗). The maps

f and g are said to be compatible if limn→∞M(fg(xn), gf(xn), t) = 1, whenever {xn}

is a sequence in X such that limn→∞ f(xn) = limn→∞ g(xn) = u for some u ∈ X and for

all t > 0.

In 1996, Pathak, Cho, Chang and Kang([71]) introduced the concept of compatible

maps of type (P ) in metric spaces and given its relationship with compatible maps and

compatible maps of type(A) in metric spaces introduced by Jungck [53] and Jungck,
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Murthy and Cho [56], respectively.

According to this notion, we give the following definition:

Definition 4.3.4 Let f and g be self-maps of a fuzzy metric space (X,M, ∗). The

maps f and g are said to be weakly compatible of type (P ) iff there exists a se-

quence {xn} in X such that limn→∞ f(xn) = limn→∞ g(xn) = u for some u ∈ X and

limn→∞M(ff(xn), gg(xn), t) = 1, for all t > 0.

Here we observe the following result:

Proposition 4.3.5 Let f and g be self maps of a fuzzy metric space (X,M, ∗) and let

the pair be (f, g)-reciprocally continuous maps. Then f and g have a coincidence point

iff they are weakly compatible maps of type (P ).

Proof. (If part) Suppose that f and g have a coincidence point, say u. If we consider

a sequence {xn} in X such that xn = u for all n ≥ 0, then we have

limn→∞ f(xn) = fu = z = gu = limn→∞ g(xn),

for some z ∈ X.

Since f and g are (f, g)-reciprocally continuous maps, then limn→∞ ff(xn) = fu and

limn→∞ gg(xn) = gu. This implies that limn→∞M(ff(xn), gg(xn), t) = M(fu, gu, t) = 1

and therefore, f and g are weakly compatible maps of type (P ).

(Only if part) Now, assume that f and g are weakly compatible maps of type (P ).

Corresponding to a sequence {xn} in X such that limn→∞ f(xn) = limn→∞ g(xn) = u

for some u ∈ X and using (M4) of Definition 4.1.3, we can write

M(fu, gu, t) ≥M(fu, ff(xn), t
3
)∗M(ff(xn), gg(xn), t

3
)∗M(gg(xn), gu, t

3
).

Taking n→∞, we get

M(fu, gu, t) ≥ limn→∞M(fu, ff(xn), t
3
) ∗ limn→∞M(ff(xn), ggxn,

t
3
)
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∗ limn→∞M(gg(xn), gu, t
3
),

which implies, since f and g are (f, g)-reciprocally continuous and weakly compatible

maps of type (P ), that M(fu, gu, t) = 1. Therefore, f and g have a coincidence point.

Gopal and Imdad ([38]) studied the concept of sub-compatible maps in fuzzy metric

spaces. Subsequently, Murthy and Tas discussed and utilized it in ([126]). We recall

that this concept was initially introduced by Bouhadjera and Thobie ([63]) in metric

spaces to weaken the notion of occasionally weakly compatible maps ([113]) and weak

compatible maps [57]. On this topic, we ask the reader to see [36, 39, 149].

Definition 4.3.6 Let f and g be self-maps of a fuzzy metric space (X,M, ∗). The maps

f and g are said to be sub-compatible iff there exists a sequence {xn} in X such that

limn→∞ f(xn) = limn→∞ g(xn) = u for some u ∈ X and

lim
n→∞

M(fg(xn), gf(xn), t) = 1,

for all t > 0.

Now, we give some illustrative examples of sub-compatible and (f, g)-reciprocally con-

tinuous maps with coincidence point and without coincidence point.

Example 4.3.7Let X = [0,∞) and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X and t > 0.

Define f, g : X → X by

f(x) =


x2, if x ∈ [0, 1)

2x, if x ∈ [1,∞)

and g(x) =


x, if x ∈ [0, 1)

x+ 1, if x ∈ [1,∞)

.

Let {xn} be a sequence in X such that {xn} = 1− 1
n+1

for all n ≥ 0. Then, we have

limn→∞ f(xn) = limn→∞ g(xn) = limn→∞ fg(xn) = limn→∞ gf(xn) = 1
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and

limn→∞M(fg(xn), gf(xn), t) = 1.

Therefore, the maps f and g are sub-compatible.

On the other hand the maps f and g are not compatible. In fact, let {xn} be a se-

quence in X such that {xn} = 1 + 1
n+1

, for all n ≥ 0. Then, we have limn→∞ f(xn) =

limn→∞ g(xn) = 2, limn→∞ fg(xn) = 4, limn→∞ gf(xn) = 3 and so

lim
n→∞

M(fg(xn), gf(xn), t) =
t

t+ 1
6= 1.

Example 4.3.8 Let X = R and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X and t > 0. Define

f, g : X → X by

f(x) =


x
2
, if x ∈ (−∞, 1)

x, if x ∈ [1,∞)

and g(x) =


x+ 1, if x ∈ (−∞, 1)

2x− 1, if x ∈ [1,∞)

.

Let {xn} be a sequence in X such that xn = 1 + 1
n
, for all n ≥ 1. Then, we have

limn→∞ f(xn) = limn→∞ g(xn) = limn→∞ fg(xn) = limn→∞ gf(xn) = 1

and

limn→∞M(fg(xn), gf(xn), t) = 1.

Therefore, the maps f and g are sub-compatible.

On the other hand, the maps f and g are not compatible. In fact, let {xn} be a

sequence in X such that {xn} = 1
n
− 2, for all n ≥ 1. Then, we have limn→∞ f(xn) =

limn→∞ g(xn) = −1, limn→∞ fg(xn) = −1
2
, limn→∞ gf(xn) = 0 and so

lim
n→∞

M(fg(xn), gf(xn), t) =
t

t+ 1/2
6= 1.
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It is easy to show that f and g are (f, g)-reciprocally continuous maps with coincidence

point x = 1 (that is also a common fixed point of the pair (f, g)) and this implies that

f and g are weakly compatible maps of type (P ).

Example 4.3.9 Let X = [0,∞) and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X and t > 0.

Define f, g : X → X by

f(x) =


1 + x, if x ∈ [0, 1);

x, if x ∈ [1,∞);

and g(x) =


1− x, if x ∈ [0, 1];

2x− 1, if x ∈ (1,∞).

.

Notice that f and g are discontinuous. Let {xn} be a sequence in X such that {xn} =

1 + 1
n+1

, for all n ≥ 0. Then, we have

limn→∞ f(xn) = limn→∞ g(xn) = limn→∞ fg(xn) = limn→∞ gf(xn) = 1,

and

limn→∞M(fg(xn), gf(xn), t) = 1.

Therefore, the maps f and g are sub-compatible.

On the other hand, the maps f and g are not compatible. In fact, let {xn} be a sequence

in X such that {xn} = 1
2n

, for all n ≥ 1. Then, we have limn→∞ f(xn) = limn→∞ g(xn) =

1, limn→∞ fg(xn) = 2, limn→∞ gf(xn) = 0 and so

lim
n→∞

M(fg(xn), gf(xn), t) =
t

t+ 2
6= 1.

It is easy to show that f and g are (f, g)-reciprocally continuous maps without a coin-

cidence point. Therefore, f and g are not weakly compatible maps of type (P ).

87



4.3.1 Main Results

Before entering into our theorem and its proof, We need the following definitions given

by Gopal and Imdad([9]) in fuzzy metric spaces.

Definition 4.3.1.1 Let (X,M, ∗) be a fuzzy metric space and f, g : X → X be given

maps. The map g is called a generalized (ϕ, ψ)-weak contraction with respect to f if

there exists a function ψ : [0,∞) → [0,∞) with ψ(r) > 0 for r > 0 and ψ(0) = 0 and

an altering distance function ϕ such that

ϕ

(
1

M(gx, gy, t)
− 1

)
≤ ϕ

(
1

m(f, g)
− 1

)
− ψ

(
1

m(f, g)
− 1

)
(4.3.1)

holds for all x, y ∈ X and each t > 0 with

m(f, g) = min{M(fx, fy, t),M(gx, fx, t),M(gy, fy, t)}.

If f = IX , where IX is the identity map, then g is called a generalized (ϕ, ψ)-weak

contraction.

Theorem 4.3.1.2 Let f, g : X → X be (f, g)-reciprocally continuous self-maps of a

fuzzy metric space (X,M, ∗) such that

1. g(X) ⊆ f(X),

2. one of f(X) and g(X) is a G-complete subset of X,

3. g is a generalized (ϕ, ψ)-weak contraction with respect to f .

If f and g are sub-compatible maps and ψ is a continuous function, then f and g have

a unique common fixed point in X, that is, there exists u ∈ X such that u = fu = gu.

Proof. Let x0 be an arbitrary point in X. Since g(X) ⊆ f(X), we can define, for each
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n ≥ 0, a sequence of points x0, x1, x2, . . . , xn, . . . , such that xn+1 is in the pre-image

under f of {g(xn)}, that is, g(x0) = f(x1), g(x1) = f(x2), . . . , g(xn) = f(xn+1), . . . for

every n ≥ 0. Moreover, we can define a sequence yn in X by

yn = g(xn) = f(xn+1), for all n ≥ 0. (4.3.2)

Suppose that yn = yn+1 for some n. Then by condition (4.3.1) we have easily yn+1 = yn+2

and so ym = yn for every m > n. Thus the sequence {yn} is Cauchy sequence. Assume

that yn+1 6= yn, for all n ≥ 0. Then, for x = xn+1 and y = xn, we have

m(f, g) = min{M(f(xn+1), f(xn), t),M(g(xn+1), f(xn+1), t),M(g(xn), f(xn), t)}

= min{M(yn, yn−1, t),M(yn+1, yn, t),M(yn, yn−1, t)}.

Now, if m(f, g) = M(yn+1, yn, t), we obtain

ϕ

(
1

M(g(xn+1), g(xn), t)
− 1

)
= ϕ

(
1

M(yn+1, yn, t)
− 1

)
≤ ϕ

(
1

M(yn+1, yn, t)
− 1

)
− ψ

(
1

M(yn+1, yn, t)
− 1

)

which implies that M(yn+1, yn, t) = 1, a contradiction as yn+1 6= yn for all n.

Then, we must have m(f, g) = M(yn, yn−1, t) and hence

ϕ

(
1

M(yn+1, yn, t)
− 1

)
≤ ϕ

(
1

M(yn−1, yn, t)
− 1

)
− ψ

(
1

M(yn−1, yn, t)
− 1

)
< ϕ

(
1

M(yn, yn−1, t)
− 1

)
.

Consequently, considering that the ϕ function is non-decreasing, we have that

M(yn, yn+1, t) > M(yn−1, yn, t), for all n,

and hence {M(yn−1, yn, t)} is an increasing sequence of positive real numbers in (0, 1].
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Let S(t) = limn→∞M(yn−1, yn, t). Now, we show that S(t) = 1, for all t > 0. If not,

there exists t > 0 such that S(t) < 1. Then from the above inequality, on taking n→∞,

we obtain

ϕ

(
1

S(t)
− 1

)
≤ ϕ

(
1

S(t)
− 1

)
− ψ

(
1

S(t)
− 1

)
,

and arrives at a contradiction. Therefore M(yn, yn+1, t)→ 1 as n→∞.

Now, for each positive integer p, we write

M(yn, yn+p, t) ≥M(yn, yn+1,
t

p
) ∗M(yn+1, yn+2,

t

p
) ∗ · · · ∗M(yn+p−1, yn+p,

t

p
).

It follows that

lim
n→∞

M(yn, yn+p, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1 = 1,

and hence {yn} is a G-cauchy sequence.

Since f(X) is G-complete, then there exists u ∈ f(X) such that yn → u as n→∞.

Clearly,

lim
n→∞

yn = lim
n→∞

g(xn) = lim
n→∞

f(xn+1) = u.

Now, (f, g)-reciprocal continuity of f and g implies that ff(xn)→ fu and gg(xn)→ gu,

as n → ∞. From ff(xn) → fu, by construction of the sequence (4.3.2), we have

fg(xn) = ff(xn+1)→ fu, as n→∞. On the other hand, sub-compatibility of f and g

yields limn→∞M(fg(xn), gf(xn), t) = 1 which implies that gf(xn) → fu. Now, taking

x = u and y = f(xn), we get

m(f, g) = min{M(fu, ff(xn), t),M(gu, fu, t),M(gf(xn), ff(xn), t)}

→M(gu, fu, t),

as n→∞. Now, by

ϕ
(

1
M(gu,gf(xn),t)

− 1
)
≤ ϕ

(
1

m(f,g)
− 1
)
− ψ

(
1

m(f,g)
− 1
)
,
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on taking n→∞, we get M(gu, fu, t) = 1, which implies that gu = fu. It means that

u is a coincidence point of f and g.

Now, we shall show that u is also a common fixed point of f and g. For this we assert

that gu = u, and so gu = u = fu. On the other hand, if gu 6= u, then taking x = u and

y = xn, we have

m(f, g) = min{M(fu, f(xn), t),M(gu, fu, t),M(g(xn), f(xn), t)}.

It follows that m(f, g)→M(gu, u, t), as n→∞.

Now, by

ϕ

(
1

M(gu, g(xn), t)
− 1

)
≤ ϕ

(
1

m(f, g)
− 1

)
− ψ

(
1

m(f, g)
− 1

)
,

on taking n→∞, we get

ϕ

(
1

M(gu, u, t)
− 1

)
≤ ϕ

(
1

M(gu, u, t)
− 1

)
− ψ

(
1

M(gu, u, t)
− 1

)
,

which implies gu = u. Therefore fu = u = gu and hence u is a common fixed point of

f and g.

For uniqueness of a fixed point, we shall assume that z be another common fixed point

of f and g. Then, by putting x = u and y = z, we have

m(f, g) = min{M(fu, fz, t),M(gu, fu, t),M(gz, fz, t)}

= min{M(u, z, t),M(u, u, t),M(z, z, t)}

= M(u, z, t).

Consequently
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ϕ
(

1
M(gu,gz,t)

− 1
)

= ϕ
(

1
M(u,z,t)

− 1
)

≤ ϕ
(

1
M(u,z,t)

− 1
)
− ψ

(
1

M(u,z,t)
− 1
)
,

which implies M(u, z, t) = 1, that holds if and only if u = z. Therefore u is a unique

common fixed point of f and g.

Example 4.3.1.3 Let X = [0, 1] and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X, t > 0. Define

ϕ, ψ : [0,∞)→ [0,∞) by ϕ(t) = t and ψ(t) = t
2
, for all t > 0. Define also f, g : X → X

by

f(x) =
x

2
for all x ∈ [0, 1] and g(x) =


x
16
, if x ∈ [0, 1

2
];

0, if x ∈ (1
2
, 1].

.

Let {xn} be a sequence in X such that xn = 1
2n

, for all n ≥ 1. Then, we have

lim
n→∞

f(xn) = lim
n→∞

g(xn) = lim
n→∞

fg(xn) = lim
n→∞

gf(xn) = lim
n→∞

ff(xn) = lim
n→∞

gg(xn) = 0

and

lim
n→∞

M(fg(xn), gf(xn), t) = 1.

Therefore, the maps f and g are sub-compatible. It is easy to show that f and g are

(f, g)-reciprocally continuous and satisfy the contractive condition (4.3.1). Thus, all the

hypotheses of Theorem 4.3.1.2 hold and x = 0 is a unique common fixed point of f and

g.

Remark 4.3.1.4 Theorem 4.3.1.2 extends and complements the related results of ([30])

and references therein.

4.3.2 Cyclic (ϕ, ψ)-Weak Contaction

In 2010, Pacurar and Rus ([115]) introduced the concept of cyclic φ-contraction and

proved a fixed point theorem for cyclic φ-contraction in complete metric spaces. Later
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Gopal, Imdad, Vetro and Hasan([40]) introduced the notion of cyclic weak φ-contraction

in fuzzy metric spaces. For other results in partial metric spaces one can refer to [28].

Definition 4.3.2.1([115]) Let X be a nonempty set, m be a positive integer and g :

X → X an operator. By definition, X =
m⋃
i=1

Xi is a cyclic representation of X with

respect to g if

(i) Xi, i = 1, 2, . . . ,m are nonempty sets,

(ii) g(X1) ⊂ X2, . . . , g(Xm−1) ⊂ Xm, g(Xm) ⊂ X1.

Example 4.3.2.2([40]) Let X = R. Assume A1 = A3 = [−2, 0] and A2 = A4 = [0, 2],

so that Y =
4⋃
i=1

Ai = [−2, 2]. Define g : Y → Y such that g(x) = −x
2
, for all x ∈ Y. It is

clear that Y =
4⋃
i=1

Ai is a cyclic representation of Y.

Results in[40] inspired us to introduce the notion of cyclic weak (ϕ, ψ)-contraction in

fuzzy metric spaces.

Definition 4.3.2.3 Let (X,M, ∗) be a fuzzy metric space, A1, A2, . . . , Am be closed

subsets of X and Y =
m⋃
i=1

Ai. An operator g : Y → Y is called a cyclic weak (ϕ, ψ)-

contraction if the following conditions hold:

(i) Y =
m⋃
i=1

Ai is a cyclic representation of Y with respect to g;

(ii) there exists a function ψ : [0,∞)→ [0,∞) with ψ(r) > 0 for r > 0 and ψ(0) = 0

and an altering distance function ϕ such that

ϕ

(
1

M(gx, gy, t)
− 1

)
≤ ϕ

(
1

M(x, y, t)
− 1

)
− ψ

(
1

M(x, y, t)
− 1

)
, (4.3.3)

for any x ∈ Ai, y ∈ Ai+1 (i = 1, 2, · · · ,m, where Am+1 = A1) and each t > 0.
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Now, we develop the following result.

Theorem 4.3.2.4 Let (X,M, ∗) be a fuzzy metric space, A1, A2, . . . , Am be closed

subsets of X and Y =
m⋃
i=1

Ai be G-complete. Suppose that there exists a continuous

function ψ : [0,∞) → [0,∞) with ψ(r) > 0 for r > 0 and ψ(0) = 0 and an altering

distance function ϕ. If g : Y → Y is a continuous cyclic weak (ϕ, ψ)-contraction, then

g has a unique fixed point u ∈
m⋂
i=1

Ai.

Proof Let x0 ∈ Y =
m⋃
i=1

Ai and set xn = gxn−1 (n ≥ 1). Clearly, we get M(xn, xn+1, t) =

M(g(xn−1), g(xn), t) for any t > 0. Besides for any n ≥ 0, there exists in ∈ {1, 2, . . . ,m}

such that xn ∈ Ain and xn+1 ∈ Ain+1. Then by (4.3.3), for t > 0 we have

ϕ

(
1

M(xn, xn+1, t)
− 1

)
= ϕ

(
1

M(g(xn−1), g(xn), t)
− 1

)
≤ ϕ

(
1

M(xn−1, xn, t)
− 1

)
− ψ

(
1

M(xn−1, xn, t)
− 1

)
≤ ϕ

(
1

M(xn−1, xn, t)
− 1

)
. (4.3.4)

It implies that M(xn, xn+1, t) ≥ M(xn−1, xn, t) for all n ≥ 1 and so {M(xn−1, xn, t)} is

a non-decreasing sequence of positive real numbers in (0, 1].

Let S(t) = lim
n→∞

M(xn−1, xn, t). Now, we show that S(t) = 1 for all t > 0. If not, there

exists some t > 0 such that S(t) < 1. Then, on making n→∞ in (4.3.4), we obtain

ϕ

(
1

S(t)
− 1

)
≤ ϕ

(
1

S(t)
− 1

)
− ψ

(
1

S(t)
− 1

)

which is a contradiction. Therefore M(xn, xn+1, t)→ 1 as n→∞.

Now, for each positive integer p, we have

M(xn, xn+p, t) ≥ M(xn, xn+1, t/p) ∗ M(xn+1, xn+2, t/p) ∗ · · · ∗ M(xn+p−1, xn+p, t/p). It

94



follows that

lim
n→∞

M(xn, xn+p, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1 = 1,

and hence {xn} is a G-Cauchy sequence.

Since Y is G-complete, then there exists z ∈ Y such that lim
n→∞

xn = z. On the other

hand, by the condition (i) of Definition 4.3.2.3, it follows that the iterative sequence {xn}

has an infinite number of terms in Ai for each i = 1, 2, . . . ,m. As Y is G-complete, from

each Ai, i = 1, 2, . . . ,m, one can extract a subsequence of {xn} that converges to z. In

virtue of the fact that each Ai, i = 1, 2, . . . ,m, is closed, we conclude that z ∈
m⋂
i=1

Ai and

so
m⋂
i=1

Ai 6= ∅. Obviously,
m⋂
i=1

Ai is closed and G-complete. Now, consider the restriction

of g on
m⋂
i=1

Ai, i.e., g|
m⋂
i=1

Ai :
m⋂
i=1

Ai →
m⋂
i=1

Ai which satisfies the assumptions of Theorem

(4.3.1.2) and thus, g|
m⋂
i=1

Ai has a unique fixed point in
m⋂
i=1

Ai, say u, which is obtained

by iteration from the starting point x0 ∈ Y . To this aim, we have to show that xn → u

as n → ∞, where xn = gxn−1 (n ≥ 1). We have proved that, for every x0 ∈ X, the

sequence {xn} converges to some z ∈ X. Then, by (4.3.3), we have

ϕ
(

1
M(xn,u,t)

− 1
)
≤ ϕ

(
1

M(xn−1,u,t)
− 1
)
− ψ

(
1

M(xn−1,u,t)
− 1
)
.

Now, letting n→∞, we get

ϕ
(

1
M(z,u,t)

− 1
)
≤ ϕ

(
1

M(z,u,t)
− 1
)
− ψ

(
1

M(z,u,t)
− 1
)

which is a contradiction if M(z, u, t) < 1, and so, we conclude that u = z. Obviously, u

is a unique fixed point of g.

Remark 4.3.2.5 Theorem 4.3.2.4 extends and generalizes the related results of ([45,

115, 43]) in fuzzy metric spaces via cyclic weak (ϕ, ψ)-contraction.

Example 4.3.2.6 Let X = R and M(x, y, t) = t
t+|x−y| , for all x, y ∈ X, t > 0. Assume

A1 = A2 = · · · = Am = [0, 1], so that Y =
m⋃
i=1

Ai = [0, 1] and define g : Y → Y by

g(x) = x2

4
for all x ∈ Y . Furthermore, if ϕ, ψ : [0,∞)→ [0,∞) are defined by ψ(s) = s

4
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and ϕ(s) = s
2

for all s ≥ 0, we have

ϕ

(
1

M(gx, gy, t)
− 1

)
=
|x2 − y2|

8t

≤ |x− y|
4t

= ϕ

(
1

M(x, y, t)
− 1

)
− ψ

(
1

M(x, y, t)
− 1

)
.

Clearly, g is a cyclic weak (ϕ, ψ)-contraction and all the conditions of Theorem (4.3.2.4)

are satisfied. Therefore g has a unique fixed point 0 ∈
m⋂
i=1

Ai.

4.4 Section III

Here we have proved common fixed point theorem of Presič type mapping in Fuzzy

metric spaces which extends the results of George ([129]).

Now we shall introduced the concept of 2k - weakly compatible pair of maps. This

notion is analogous to the notion introduced by Rao, Kishore and Ali ([92]).

Definition 4.4.1 ([92]) Let X be a non empty set and T : X2k → X, f : X → X.(f, T )

is said to be 2k - weakly compatible pair, if f(T (p, p, · · · , p)) = T (fp, fp, · · · , fp) when-

ever p ∈ X such that fp = T (p, p, · · · , p).

4.4.1 Main Results

Consider a function φ : [0, 1]2k → [0, 1] such that:

(i) φ is an increasing function, i.e.,

x1 ≤ y1, x2 ≤ y2, · · · , x2k ≤ y2k implies φ(x1, x2, · · · , x2k) ≤ φ(y1, y2, · · · , y2k).

(ii) φ(t, t, t, · · · ) ≥ t, for all t ∈ X.

(iii) φ is continuous in all variables.
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Now we prove our main theorem:

Theorem 4.4.1.1 Let (X,M, ∗) be a Fuzzy Metric space, k is a positive integer and

S, T : X2k → X, f : X → X be mappings satisfying

M(S(x1, x2, · · · , x2k−1, x2k), T (x2, x3, · · · , x2k, x2k+1), qt) ≥ φ{M(fxi, fxi+1, t) : 1 ≤ i ≤ 2k}

(4.4.1)

for all x1, x2, · · · , x2k+1 in X, 0 < q < 1
2

and t ∈ [0,∞)

M(T (y1, y2, · · · , y2k−1, y2k), S(y2, y3, · · · , y2k, y2k+1), qt) ≥ φ{M(fyi, fyi+1, t) : 1 ≤ i ≤ 2k}

(4.4.2)

for all y1, y2, · · · , y2k+1 in X,

M(S(u, u, · · · , u), T (v, v, · · · , v), qt) > M(fu, fv, t),∀u, v ∈ X with (u 6= v)

(4.4.3)

Suppose that f(X) is complete and either (f, S) or (f, T ) is 2k - weakly compatible

pair.

Then there exists a unique point p ∈ X such that

fp = p = S(p, p, · · · , p) = T (p, p, · · · , p).

Proof Suppose x1, x2, · · · , x2k are arbitrary points in X and for n ∈ N.

Define f(x2k+2n−1) = S(x2n−1, x2n, x2n+1, · · · , x2n+2k−2) and

f(x2k+2n) = T (x2n, x2n+1, x2n+2, · · · , x2n+2k−1).

Let αn = M(f(xn), f(xn+1), qt).

Claim: αn ≥ (K − θ
n

K + θn
)2 for all n ∈ N,

where θ = 1
2q , and K = min{

θ(1 +
√
α1)

1−√α1

,
θ2(1 +

√
α2)

1−√α2

, · · · ,
θ2k(1 +

√
α2k)

1−√α2k

}

By selection of k we have αn ≥ (
K − θn

K + θn
)2 for n = 1, 2, · · · , 2k.

Now
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α2k+1 = M(f(x2k+1), f(x2k+2), qt)

= M(S(x1, x2, · · · , x2k−1, x2k), T (x2, x3, · · · , x2k, x2k+1), qt)

≥ φ{M(f(xi), f(xi+1), t) : i = 1, 2, · · · , 2k} by (4.4.1)

= φ{α1, α2, · · · , α2k−1, α2k}

≥ φ{(K − θ
1

K + θ1
)2, (

K − θ2

K + θ2
)2, · · · , (K − θ

2k−1

K + θ2k−1
)2, (

K − θ2k

K + θ2k
)2}

≥ φ{(K − θ
2k

K + θ2k
)2, (

K − θ2k

K + θ2k
)2, · · · , (K − θ

2k

K + θ2k
)2, (

K − θ2k

K + θ2k
)2}

≥ (
K − θ2k

K + θ2k
)2

≥ (
K − θ2k+1

K + θ2k+1
)2

Thus α2k+1 ≥ (
K − θ2k+1

K + θ2k+1
)2

Similarly,

α2k+2 = M(f(x2k+2), f(x2k+3), qt)

= M(T (x2, x3, · · · , x2k, x2k+1), S(x3, x4, · · · , x2k+2), qt)

≥ φ{M(f(xi), f(xi+1), t) : i = 2, 3 · · · , 2k + 1} by (4.4.1)

= φ{αi : i = 2, 3, · · · 2k + 1}

≥ φ{(K − θ
2

K + θ2
)2, (

K − θ3

K + θ3
)2, · · · , (K − θ

2k

K + θ2k
)2, (

K − θ2k+1

K + θ2k+1
)2}

≥ φ{(K − θ
2k+1

K + θ2k+1
)2, (

K − θ2k+1

K + θ2k+1
)2, · · · , (K − θ

2k+1

K + θ2k+1
)2, (

K − θ2k+1

K + θ2k+1
)2}

≥ (
K − θ2k+1

K + θ2k+1
)2
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≥ (
K − θ2k+2

K + θ2k+2
)2

Thus α2k+2 ≥ (
K − θ2k+2

K + θ2k+2
)2

Hence the claim is true.

Now, by claim for any n, p ∈ N, we have

M(f(xn), f(xn+p), t) ≥M(f(xn), f(xn+1),
t

2
) ∗M(f(xn+1), f(xn+2),

t

22
)

∗ · · · ∗M(f(xn+p−1), f(xn+p),
t

2p
)

≥ αn ∗ αn+1 ∗ · · · ∗ αn+p−1

≥ (
K − 2n

K + 2n
)2 ∗ (

K − 22n

K + 22n
)2 ∗ · · · ∗ (

K − 2np

K + 2np
)2

→ 1 ∗ 1 ∗ · · · ∗ 1 as n→∞.

Hence {f(xn)} is Cauchy sequence. Since f(X) is a complete then there will exists z in

f(X) such that limn→∞ f(xn) = z. There exists p ∈ X such that z = fp. Then for any

integer n, using (4.4.1) and (4.4.2), we have

M(S(p, p, p · · · , p), fp, t) = limn→∞M(S(p, p, · · · , p), fx2n+2k−1, t)

= limn→∞M(S(p, p, · · · , p), S(x2n−1, x2n, · · · , x2n+2k−2), t)

≥ limn→∞M(S(p, p, · · · , p), T (p, p, · · · , x2n−1), t2)

∗M(T (p, p, · · · , x2n−1), S(p, p, · · · , x2n−1, x2n), t
23

) ∗ · · ·

∗M(T (p, x2n−1, · · · , x2n+2k−3), S(x2n−1, x2n, · · · , x2n+2k−2),
t

2k−1 )

≥ limn→∞ φ{M(fp, fp, t),M(fp, fp, t), · · · ,M(fp, fx2n−1, t)}

∗φ{M(fp, fp, t),M(fp, fp, t), · · · ,M(fx2n−1, fx2n, t)}

∗ · · · ∗ φ{M(fp, fx2n−1, t),M(fx2n−1, fx2n, t),
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· · · ,M(fx2n+2k−3, fx2n+2k−2, t)} → 1,

i.e., M(S(p, p, · · · , p), f(p), t) = 1 and so c(f, T ) 6= Φ where c(f, T ) denote the set of

all coincidence points of the mappings f and T.

So that

S(p, p, · · · p) = fp (4.4.4)

Consider

M(f(p), T (p, p, · · · , p), t) = M(S(p, p, · · · , p), T (p, p, · · · , p), t)

≥ φ{M(f(p), f(p), t),M(f(p), f(p), t), · · · ,M(f(p), f(p), t)}

≥M(f(p), f(p), t)

= 1

Thus

T (p, p, · · · , p) = f(p). (4.4.5)

Now suppose that (f, S) is 2k - weakly compatible pair. Then we, have

f(S(p, p, · · · , p)) = S(f(p), f(p), · · · , f(p)).

f 2(p) = f(f(p)) = f(S(p, p, · · · , p)) = S(f(p), f(p), · · · , f(p)).

Suppose that f(p) 6= p. Then from (4.4.3), we have

M(f 2(p), f(p), t) = M(S(f(p), f(p), · · · , f(p)), T (p, p, · · · , p), t)

≥ {M(f 2(p), f(p), t),M(f 2(p), f(p), t), · · · ,M(f 2(p), f(p), t)}

≥M(f 2(p), f(p), t).

It is a contradiction.

Therefore f(p) = p. Now from (4.4.4) and (4.4.5), we have

f(p) = p = S(p, p, · · · , p) = T (p, p, · · · , p).
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Uniqueness of p:

Suppose there exists a point q 6= p in X such that

f(q) = q = S(q, q, · · · , q) = T (q, q, · · · , q)

Consider

M(f(p), f(q), t) = M(S(p, p, · · · , p), T (q, q, · · · , q), t)

≥ φ{M(f(p), f(q), t),M(f(p), f(q), t), · · · ,M(f(p), f(q), t)}

≥M(f(p), f(q), t).

It is a contradiction. Therefore p = q.

When S = T and 2k is replaced by k in main theorem, we get the following corollary.

Corollary 4.4.1.2 Let (X,M, ∗) be a FM - space, k is a positive integer T : Xk →

X, f : X → X be mappings satisfying

M(T (x1, x2, · · · , xk), T (x2, x3, · · · , xk+1, qt) ≥ φ{M(f(xi), f(xi+1), t) : 1 ≤ i ≤ 2k}

for all x1, x2, · · · , xk+1 in X, 0 < q < 1
2

and t ∈ [0,∞)

M(T (u, u, · · · , u), T (v, v, · · · , v), qt) > M(f(u), f(v), t),∀u, v ∈ X with u 6= v

Suppose that f(X) is complete and (f, T ) is k - weakly compatible pair. Then there

exists a unique point p ∈ X such that f(p) = p = S(p, p, · · · , p) = T (p, p, · · · , p).
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Chapter 5

PERIODIC POINTS IN A COMPLEX VALUED METRIC
SPACE

5.1

In this chapter, first we shall introduce the concept of complex valued metric space by

modifying the same introduced initially by Azam, Fisher and Khan([4]). As an appli-

cation of these concepts, we shall construct a theorem and its application in integral

equations.

The first result of this type was due to Sehgal([160]) and his result was generalized by

Guseman([96]), Khanzanchi([101]), Rhoades and Ray([20]) and Murthy and Pathak([125]).

Complex Valued Metric Space:

Let X be a nonempty set and let ρ : X ×X → C, where C is a set of complex numbers

in which ordering is not the same as in the set of real numbers. We recall some impor-

tant definitions, lemmas and theorems for our further study on common fixed points in

complex valued metric spaces.

Let C be a set of complex numbers and ξ1, ξ2 ∈ C. Define a partial order � on C which

follows:

The elements ξ1, ξ2 ∈ C are partially ordered denoted by

ξ1 � ξ2 ⇒ Re(ξ1) < Re(ξ2), Im(ξ1) < Im(ξ2),

or
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ξ1 � ξ2 ⇒ Re(ξ1) < Re(ξ2), Im(ξ1) < Im(ξ2),

Two elements ξ1, ξ2 ∈ C, and

ξ1 � ξ2 (or ξ1 � ξ2)

If one of the following conditions holds:

(i) Re(ξ1) = Re(ξ2), Im(ξ1) = Im(ξ2),

(ii) Re(ξ1) < Re(ξ2), Im(ξ1) < Im(ξ2),

or Re(ξ1) > Re(ξ2), Im(ξ1) > Im(ξ2),

(iii) Re(ξ1) < Re(ξ2), Im(ξ1) = Im(ξ2),

or Re(ξ1) > Re(ξ2), Im(ξ1) = Im(ξ2),

(iv) Re(ξ1) = Re(ξ2), Im(ξ1) < Im(ξ2),

or Re(ξ1) = Re(ξ2), Im(ξ1) > Im(ξ2)

In particular,

ξ1 � ξ2 (or ξ1 � ξ2), if ξ1 6= ξ2 and one of (ii), (iii) and (iv) is satisfied.

We will also write ξ1 ≺ ξ2(or ξ1 � ξ2), if (ii) is satisfied.

Note that 0 � ξ1 � ξ2 =⇒| ξ1 |<| ξ2 |,

For all ξ1, ξ2, ξ3 ∈ C

ξ1 � ξ2, ξ2 ≺ ξ3 =⇒ ξ1 ≺ ξ2.

Definition 5.1.1 Let X be a nonempty set. Suppose that the mapping ρ : X×X → C,

satisfies

(CM1) 0 � ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y;
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(CM2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(CM3) ρ(x, y) � ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Then ρ is called a complex valued metric on X and (X, ρ) is called a complex valued

metric space.

Remark 5.1.2 For various examples on complex valued metric spaces refer ([4], [49],

[171]).

A point x in X is called an interior point of a set A ⊆ X if there exists 0 ≺ r ∈ C such

that

B(x, r) = {y ∈ X : ρ(x, y) ≺ r} ⊆ A.

A point x of X is called a limit point of A, if there exists B(x, r) centered at x with ra-

dius r which contains at least one point of A other than x. i.e. (B(x, r)−{x})∩A∼x 6= φ.

A subset G of X is said to be open if each point of G is an interior point of G. A

subset B of X is said to be closed if each limit point of B is in B.

The family F = {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for the Hausdorff topology

on X.

A sequence {xn} of X is said to be a convergent sequence and converges to a point

x ∈ X, if for a given ε ∈ C with ε � 0, there exists a positive integer n0 such that

ρ(xn, x) ≺ ε for all n > n0.

A sequence {xn} of X is said to be a Cauchy sequence, if for a given ε ∈ C with

ε � 0 there exists a positive integer n0 such that ρ(xn, xm) ≺ ε for all m,n > n0.
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A complex valued metric space (X, ρ) is said to be complete, if every Cauchy sequence

in X is a convergent sequence.

Lemma 5.1.3 Let (X, ρ) be a complex valued metric space and let {xn} be a sequence

in X. Then {xn} converges to x if and only if | ρ(xn, x) |→ 0 as n→∞.

Lemma 5.1.4 Let (X, ρ) be a complex valued metric space and let {xn} be a sequence

in X. Then {xn} is a Cauchy sequence if and only if | ρ(xn, xn+m) |→ 0 as m,n→∞.

5.1.1 Main Results

We prove the following theorem in complex valued metric space.

Theorem 5.1.1.1 Let E and F be two self mappings of a complete complex metric

space (X, ρ) such that there exist positive integers p(x) and q(x) such that for each

x, y ∈ X,

ρ(Ep(x)x, F q(y)y) � α(ρ(x, y))ρ(x,Ep(x)x)ρ(y, F q(y)y)

ρ(x, y) + ρ(x, F q(y)y) + ρ(y, Ep(x)x)
+ β(ρ(x, y))ρ(x, y) (5.1.1)

where α, β : C+ → [0, 1) such that for all x, y ∈ X,α(x) + β(x) < 1.

Then E and F have a unique common fixed point in X.

Proof Let x0 be an arbitrary point of X and define the sequence {xn}

xn =

 Ep(xn−1)xn−1, when n is odd,

F q(xn−1)xn−1, when n is even
(5.1.2)

for n = 1, 2, 3 · · ·

If x2n+1 = x2n+2, then {xn} is a Cauchy sequence.
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Now suppose that x2n+1 6= x2n+2 for each p(x) 6= q(y). Then

ρ(x2n+1, x2n+2) = ρ(Ep(x2n)x2n, F
q(x2n+1)x2n+1)

� α(ρ(x2n, x2n+1))ρ(x2n, E
p(x2n)x2n)ρ(x2n+1, F

q(x2n+1)x2n+1)

ρ(x2n, x2n+1) + ρ(x2n, F
q(x2n+1)x2n+1) + ρ(x2n+1, E

p(x2n)x2n)

+β(ρ(x2n, x2n+1))ρ(x2n, x2n+1)

� α(ρ(x2n, x2n+1))ρ(x2n, x2n+1)ρ(x2n+1, x2n+2)
ρ(x2n, x2n+1) + ρ(x2n, x2n+2) + ρ(x2n+1, x2n+1)

+β(ρ(x2n, x2n+1))ρ(x2n, x2n+1)

� α(ρ(x2n, x2n+1))ρ(x2n, x2n+1) + β(ρ(x2n, x2n+1))ρ(x2n, x2n+1),

since ρ(x2n+1, x2n+2) � ρ(x2n, x2n+2) + ρ(x2n, x2n+1)).

Or equivalently

ρ(x2n+1, x2n+2) � δ(ρ(x2n, x2n+1))ρ(x2n, x2n+1), (5.1.3)

where δ = α + β < 1.

Similarly, replacing x by x2n+2 and y by x2n+3, we have

ρ(x2n+2, x2n+3) � α(ρ(x2n+1, x2n+2)) + β(ρ(x2n+1, x2n+2))ρ(x2n+1, x2n+2),

or equivalently

ρ(x2n+2, x2n+3) � δ(ρ(x2n+1, x2n+2))ρ(x2n+1, x2n+2) (5.1.4)

where δ = α + β < 1.

From (5.1.3) and (5.1.4), we have

ρ(xn, xn+1) � δ(ρ(xn−1, xn))ρ(xn−1, xn)
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for all n ∈ N , which implies that

| ρ(xn, xn+1) | ≤ | δ(ρ(xn−1, xn)) || ρ(xn−1, xn) | ≤ | ρ(xn−1, xn) | . (5.1.5)

Therefore {ρ(xn−1, xn)}n∈N is monotonically decreasing and bounded below.

Hence | ρ(xn−1, xn) |→ d for some d ≥ 0.

To prove that d = 0, we shall assume d > 0. Taking the limit as n → ∞ in (5.1.5), we

have

| δ(ρ(xn−1, xn)) |→ 1.

Since δ ∈M, | ρ(xn−1, xn) |→ 0, is a contradiction. Therefore, we have d = 0.

Now, we shall show that the sequence {xn} is a Cauchy sequence. It is easy and enough

to show that {x2n} is a Cauchy sequence.

Since X is complete, every Cauchy sequence in X is convergent and converges to a point

u (say) in X.

Suppose F (u) 6= u. Then from (5.1.1), we have

ρ(x2n+1, F
q(u)u) = ρ(Ep(x2n)x2n, F

q(u)u)

� α(ρ(x2n, u))ρ(x2n, E
p(x2n)x2n)ρ(u, F q(u)u)

ρ(x2n, u) + ρ(x2n, F
q(u)u) + ρ(u,Ep(x2n)x2n)

+β(ρ(x2n, u))ρ(x2n, u).

Letting n→∞ in the above inequality, it follows that | ρ(u, F q(u)u) |→ 0.

Thus F q(u)u = u. Similarly we can show that Ep(u)u = u and so u is a periodic point of

E and F.

Now we shall show that this point is unique. If possible, let v be another periodic point

of E and F. i.e. Ep(u)u = u and F q(v)v = v. Then

ρ(u, v) = ρ(Ep(u)u, F q(v)v)
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� α(ρ(u, v))ρ(u,Ep(u)u)ρ(v, F q(v)v)

ρ(u, v) + ρ(u, F q(v)v) + ρ(u,Ep(u)u)

+β(ρ(u, v))ρ(u, v)

and so

ρ(u, v) � β(ρ(u, v))ρ(u, v)

which implies that u = v, since 0 ≤ β(ρ(u, v)) < 1).

Hence u is a unique periodic point of E and F.

Now Eu = EEp(u)u = Ep(u)E(u) implies that E(u) is a periodic point of E. From the

uniqueness of u.E(u) = u. Similarly, F (u) = u. Hence, u is a common fixed point of E

and F.

This completes the proof.

Theorem 5.1.1.2 Let E and F be two self mappings of a complete complex metric

space (X, d) such that there exists positive integers p(x) and q(x) such that for each

x, y ∈ X,

ρ(Ep(x)x, F q(y)y) � α
ρ(x,Ep(x)x)ρ(y, F q(y)y)

ρ(x, y) + ρ(x, F q(y)y) + ρ(y, Ep(x)x)
+ βρ(x, y) (5.1.6)

where α, β ≥ 0 and α + β < 1.

Then E and F have a unique common fixed point in X.

Proof Let x0 be an arbitrary point of X and define the sequence {xn}

xn =

 Ep(xn−1)xn−1, when n is odd,

F q(xn−1)xn−1, when n is even
(5.1.7)

for n = 1, 2, 3 · · · .

If x2n+1 = x2n+2, then {xn} is a Cauchy sequence.
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If not let x2n+1 6= x2n+2 for each p(x) 6= q(y). Then

ρ(x2n+1, x2n+2) = ρ(Ep(x2n)x2n, F
q(x2n+1)x2n+1)

� α
ρ(x2n, E

p(x2n)x2n)ρ(x2n+1, F
q(x2n+1)x2n+1)

ρ(x2n, x2n+1) + ρ(x2n, F
q(x2n+1)x2n+1) + ρ(x2n+1, E

p(x2n)x2n)

+βρ(x2n, x2n+1)

� α
ρ(x2n, x2n+1)ρ(x2n+1, x2n+2)

ρ(x2n, x2n+1) + ρ(x2n, x2n+2) + ρ(x2n+1, x2n+1)

+βρ(x2n, x2n+1),

since

ρ(x2n+1, x2n+2) � ρ(x2n, x2n+2) + ρ(x2n, x2n+1))

and so

ρ(x2n+1, x2n+2) � (α + β)ρ(x2n, x2n+1).

Thus, for any m > n,

ρ(xn, xm) � ρ(xn, xn+1) + ρ(xn+1, xn+2) + · · ·+ ρ(xm−1, xm)

� (δn + δn+1 + δn+2 + · · ·+ δm−1)ρ(x0, x1)

and so

| ρ(xn, xm) |≤ δn

1− δ
| d(x0, x1) |→ 0

as m,n→∞, where δ = α+ β < 1. This implies that {xn} is a Cauchy sequence in X.

Since X is complete, every Cauchy sequence in X is a convergent and so the sequence

{xn} converges to a point u in X.

Suppose F (u) 6= u, then from (5.1.6), we have

ρ(x2n+1, F
(u)u) = ρ(Ep(x2n)x2n, F

q(u)u)

� α
ρ(x2n, E

p(x2n)x2n)ρ(u, F q(u)u)

(ρ(x2n, u) + ρ(x2n, F
q(u)u) + ρ(u,Ep(x2n)x2n))

+ βρ(x2n, u).
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Letting n→∞ in the above inequality implies that | ρ(u, F (u)u) |→ 0. Thus F (u)u = u.

Similarly we can show that E(u)u = u and so u is a periodic point of E and F.

Now we shall show that this point is unique. Suppose if possible that v is another

periodic point of E and F. i.e. E(u)u = u and F (v)v = v. Then

ρ(u, v) = ρ(Ep(u)u, F q(v)v)

� α
ρ(u,Ep(u)u)ρ(v, F q(v)v)

ρ(u, v) + ρ(u, F q(v)v) + ρ(u,Ep(u)u)
+ βρ(u, v)

= βρ(u, v),

which implies that u = v, since β < 1. Hence u is a unique periodic point of E and F.

Now Eu = EEp(u)u = Ep(u)E(u) implies that E(u) is a periodic point of E. Then from

the uniqueness of u, we have E(u) = u. Similarly, F (u) = u. Hence, u is a common fixed

point of E and F.

This completes the proof of the theorem.

As an immediate consequence of the above theorems, we have the following corollaries:

Corollary 5.1.1.3 Let E be a self mapping of a complete complex metric space (X, ρ)

such that there exists positive integers p(x) and q(x) such that for each x, y ∈ X,

ρ(Ep(x)x,Eq(y)y) � α(ρ(x, y))ρ(x,Ep(x)x)ρ(y, Eq(y)y)

ρ(x, y) + ρ(x,Eq(y)y) + ρ(y, Ep(x)x)
+ β(ρ(x, y))ρ(x, y)

where α, β : C+ → [0, 1) such that for all x, y ∈ X,α(x) + β(x) < 1. Then E has a

unique common fixed point in X.

Corollary 5.1.1.4 Let E be a self mappings of a complete complex metric space (X, ρ)

such that there exists positive integers p(x) and q(x) such that for each x, y ∈ X,

ρ(Ep(x)x,Eq(y)y) � α
ρ(x,Ep(x)x)ρ(y, Eq(y)y)

ρ(x, y) + ρ(x,Eq(y)y) + ρ(y, Ep(x)x)
+ βρ(x, y)
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where α, β ≥ 0 such that α + β < 1. Then E has a unique common fixed point in X.

Corollary 5.1.1.5 Let E be a self mapping of a complete complex metric space (X, ρ)

such that there exists positive integer p such that for each x, y ∈ X,

ρ(Epx,Epy) � α(ρ(x, y))ρ(x,Epx)ρ(y, Epy)

ρ(x, y) + ρ(x,Epy) + ρ(y, Epx)
+ β(ρ(x, y))ρ(x, y)

where α, β : C+ → [0, 1) such that for all x, y ∈ X,α(x) + β(x) < 1. Then E has a

unique common fixed point in X.

Corollary 5.1.1.6 Let E be a self mappings of a complete complex metric space (X, ρ)

such that there exists positive integer p such that for each x, y ∈ X,

ρ(Epx,Epy) � α
ρ(x,Epx)ρ(y, Epy)

ρ(x, y) + ρ(x,Epy) + ρ(y, Epx)
+ βρ(x, y)

where α, β ≥ 0 such that α + β < 1. Then E has a unique common fixed point in X.

Corollary 5.1.1.7 Let E be a self mapping of a complete complex metric space (X, ρ)

such that for each x, y ∈ X,

ρ(Ex,Ey) � α(ρ(x, y))ρ(x,Ex)ρ(y, Ey)

ρ(x, y) + ρ(x,Ey) + ρ(y, Ex)
+ β(ρ(x, y))ρ(x, y)

where α, β : C+ → [0, 1) such that for all x, y ∈ X,α(x) + β(x) < 1. Then E has a

unique common fixed point in X.

Corollary 5.1.1.8 Let E be a self mappings of a complete complex metric space (X, ρ)

such that for each x, y ∈ X,

ρ(Ex,Ey) � α
ρ(x,Ex)ρ(y, Ey)

ρ(x, y) + ρ(x,Ey) + ρ(y, Ex)
+ βρ(x, y)
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where α, β ≥ 0 such that α + β < 1. Then E has a unique common fixed point in X.

5.1.2 Application

As an application of the above result we shall construct the following:

Let X = C([a, b], Rn), a > 0 and let ρ : X ×X → C be defined by

ρ(x, y) = maxt∈[a,b] ‖ x(t)− y(t) ‖∞
√

1 + a2 ei tan
−1 a.

Consider the Urysohns integral equations

x(t) =

∫ b

a

K1(t, s, x(s))ds+ g(t), (5.1.8)

x(t) =

∫ b

a

K2(t, s, x(s))ds+ g(t), (5.1.9)

where t ∈ [a, b] ⊆ R, x, g, h ∈ X and K1, K2 : [a, b]× [a, b]× Rn → Rn.

Suppose K1, K1 are such that Fx, Gx ∈ X for all x ∈ X, where

Fx(t) =

∫ b

a

K1(t, s, x(s))ds, (5.1.10)

Gx(t) =

∫ b

a

K2(t, s, x(s))ds (5.1.11)

for all t ∈ [a, b].

If there exist two mappings α, β : C+ → [0, 1] such that for all x, y ∈ X the fol-

lowing hold:

(i) α(t) + β(t) < 1;
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(ii) the mapping γ : C+ → [0, 1] defined by γ(x) α(x)
1−β(x) belongs to Γ;

(iii) ‖ Fx(t)−Gy(t) + g(t)− h(t) ‖∞
√

1 + a2 ei tan
−1 a

� α(maxt∈[a,b]A(x, y)(t))A(x, y) + β(maxt∈[a,b]A(x, y)(t))B(x, y),

where

A(x, y)(t) =‖ x(t)− y(t) ‖∞
√

1 + a2 ei tan
−1 a

and

B(x, y)(t) =
‖ Fx(t) + g(t)− x(t) ‖∞ ‖ Gy(t) + h(t)− y(t) ‖∞

‖ Fx(t) + g(t)− y(t) ‖∞ + ‖ Gy(t) + h(t)− x(t) ‖∞ + d(x, y)
.

Then the system of integral equations (5.1.8) and (5.1.9) has a unique common solution.

Proof Define S, T : X → X by S(x) = Fx + g and T (x) = Gy + h. Then

ρ(Sx, Ty) = max
t∈[a,b]

‖ Fx(t)−Gy(t) + g(t)− h(t) ‖∞
√

1 + a2 ei tan
−1 a,

ρ(x, Sx) = max
t∈[a,b]

‖ Fx(t) + g(t)− x(t) ‖∞
√

1 + a2 ei tan
−1 a,

ρ(y, Ty) = max
t∈[a,b]

‖ Gy(t) + h(t)− y(t) ‖∞
√

1 + a2 ei tan
−1 a,

ρ(y, Sx) = max
t∈[a,b]

‖ Fx(t) + g(t)− y(t) ‖∞
√

1 + a2 ei tan
−1 a,

ρ(x, Ty) = max
t∈[a,b]

‖ Gy(t) + h(t)− x(t) ‖∞
√

1 + a2 ei tan
−1 a.

Then we can easily see that for x, y ∈ X,

ρ(Ex, Fy) � α
ρ(x, Ex)ρ(y, Fy)

ρ(x, y) + ρ(x, Fy) + ρ(y, Ex)
+ β ρ(x, y).

By applying Theorem 5.1.1.1 we get the solution to (5.1.8) and (5.1.9) of Urysohn’s

Integral Equations which is unique.
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Chapter 6
COMMON FIXED POINTS FOR INTEGRAL TYPE
CONTRACTIVE CONDITION IN MENGER SPACES

6.1

In this section, we shall establish a fixed point theorem for integral type contraction

condition in the probabilistic metric space for a pair of compatible maps of type (A) (

or compatible of type (P) or weak compatible of type (A)) maps.

In 2002, Branciari ([5]) introduced the integral contraction type of condition for obtain-

ing fixed points. His theorem generalizes the Banach Fixed Point Theorem([134]) in

metric spaces.

Generalizations of integral type contraction condition for a pair of maps are given by

Rhoades ([15]), Kumar ,Chugh and Vats ([153]), etc.

Menger spaces:

First, we recall that a real valued function defined on the set of real numbers is known

as a distribution function if it is non-decreasing, left-continuous and

inf f(x) = 0, sup f(x) = 1.

An example of a distribution function is Heavyside function Hz(x), defined by

∗Published in
“Common fixed points for integral type contractive condition in menger space”International Journal

of Mathematics and Scientific Computing, VOL. 2, NO. 1, 2012
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H(x) =

 0 : if x ≤ 0

1 : if x > 0

Definition 6.1.1 A probabilistic metric space (PM-space) is a pair (X,F ) where X

is a nonempty set and F is a function defined on X ×X into L, the set of distribution

functions, such that if x, y and z are points of X, then

(i) F (x, y; 0) = 0;

(ii) F (x, y; t) = H(t) if and only if x = y;

(iii) F (x, y; t) = F (y, x; t);

(iiii) F (x, y; s) = 1 and F (y, z; t) = 1 then F (x, z; s + t) = 1 for all x, y, z ∈ X and

s, t > 0.

For each x and y in X and for each real number t→ 0, F (x, y; t) is to be thought of as

the probability that the distance between x and y is less than t. Of course, any metric

space (X, d) may be regarded as a PM-space. Indeed, if (X, d) is a metric space, then

the distribution function F (x, y; t) defined by

F (x, y; t) = H(t̃d(x, y))

induces a PM-space , where d is a usual metric.

In this section,(X,F ) is considered as probabilistic metric space with the condition that

limt→∞ F (x, y; t) = 1 for all x, y in X.

Definition 6.1.2 A t-norm is a 2-place function 4 : [0, 1] × [0, 1] → [0, 1] satisfying

the following;
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(a) 4(0, 0) = 0,

(b) 4(0, 1) = 1 ,

(c) 4(a, b) = 4(b, a),

(d) If a ≤ c, b ≤ d, then 4(a, b) ≤ 4(c, d),

(e) 4(4(a, b), c) = 4(a,4(b, c)) for all a, b, c in [0, 1].

Definition 6.1.3 A Menger PM-space is a triplet (X,F,4) where (X,F ) is a PM-space

and 4 is a t-norm with the following condition:

F (x, z; s+ t) ≥ 4(F (x, y; s), F (y, z; t)) for all x, y, z ∈ X and s, t > 0.

This inequality is known as Menger’s triangle inequality.

In 1966, the notion of contraction mapping on PM-space was first introduced by Seghal([164]).

Moreover, “every contraction mapping on a complete Menger space has a unique fixed

point”. For more detail see, ([87], [124], [71], [72], [76], [106], [164]).

Theorem 6.1.4 Let (X,F ) be a PM-space and f : X → X be an arbitrary mapping

on X. Then f is called a contraction if there exist k ∈ (0, 1) such that for all x, y in X

and t > 0, we have F (f(x), f(y); kt) ≥ F (x, y; t).

In 1991, Mishra ([147]) introduced the concept of compatible mappings in PM-space.

Theorem 6.1.5 Let f and g be self mappings on a Menger space (X,F,4). Then

the mappings f and g are called compatible, if limn→∞ F (fgxn, gfxn, t) = 1, whenever

{xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = u for some u ∈ X, for

all t > 0.

In 1992, Cho, Murthy and Stojakovic ([175]) introduced the notion of Compatible map-

pings of type (A) in Menger Spaces which follows:
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Theorem 6.1.6 Let f and g be self mappings on a Menger space (X,F,4). The map-

pings f and g are called compatible maps of type (A) if limn→∞ F (fg(xn), gg(xn), t) = 1

and limn→∞ F (fg(xn), gg(xn), t) = 1, whenever {xn} is a sequence in X such that

limn→∞ f(xn) = limn→∞ g(xn) = u for some u ∈ X for all t > 0.

Theorem 6.1.7 ([72]) Let f and g be self mappings on a Menger space (X,F,4). The

mappings f and g are called weak compatible maps of type (A) if

limn→∞ F (fg(xn), gg(xn), t) = 1 or limn→∞ F (fg(xn), gg(xn), t) = 1 whenever {xn} is a

sequence in X such that limn→∞ f(xn) = limn→∞ g(xn) = u for some u ∈ X and for all

t > 0.

Remrk 6.1.8 Now we state some results, which highlight relation among compatible

mappings, compatible mappings of type (A),compatible mappings of type (P) and weak

compatible mappings of type (A).

(i) Let f and g be compatible (res. compatible mappings of type (P),compatible map-

pings of type (A) and weak compatible mappings of type (A)) self-mappings of a Menger

space (X,F,∆) . If f(t) = g(t) for some t ∈ X ,then fg(t) = gf(t).

(ii) Let f, g : (X,F,∆)→ (X,F,∆) be continuous mappings .Then f and g are compat-

ible if and only if f and g are compatible mappings of type (A) (or compatible mappings

of type (P), weak compatible mappings of type (A)).

(iii) Let (X,F,∆) be a Menger space. Let f, g : X → X be compatible mappings of

type (A) (compatible mappings of type (P) ,weak compatible mappings of type (A)). If

one of f and g is continuous, then f and g are compatible.

(iv) Let f, g : (X,F,∆)→ (X,F,∆) be compatible mappings of type (A) ( compatible

mappings of type (P) ,weak compatible mappings of type (A)) and fx = gx for some

x ∈ X, then fg(x) = gg(x) = gf(x) = gg(x).
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6.2 Variants of compatible maps

Now, we shall prove our theorems in Menger Spaces:

Theorem 6.2.1 Let f and g be compatible self maps of a complete metric space (X, d)

satisfying the following conditions:

(6.2.1) f(X) ⊂ g(X),

(6.2.2) one of the mapping f or g is continuous

(6.2.3)
∫ d(fx,fy)
0

φ(t)dt ≤ c.
∫ d(gx,gy)
0

φ(t)dt, for each x, y ∈ X, c ∈ [0, 1).

where φ : R+ → R+ is a Lebesgue-integrable mapping which is summable, non-negative,

and such that

(6.2.4)
∫ ε
0
φ(p)dp > 0 for each ε > 0.

Then f and g have a unique common fixed point.

Remark 6.2.2 Rhoades pointed out that inequality (6.2.3) should be as d(fx, fy) <

d(gx, gy).

Since c < 1,
∫ d(fx,fy)
0

φ(t)dt < c.
∫ d(gx,gy)
0

φ(t)dt implies d(fx, fy) ≤ d(gx, gy) for all

x, y ∈ X.

If d(fx, fy) ≥ d(gx, gy), for some x, y ∈ X then by using (6.2.3), we have

∫ d(gx,gy)

0

φ(t)dt ≤
∫ d(fx,fy)

0

φ(t)dt <

∫ d(gx,gy)

0

φ(t)dt

which is a contradiction.

Now in this section, we give an analogue of the Theorem 6.2.1 in the probabilistic

metric space setting using compatible of type (A) ( or compatible of type (P) or weak

compatible of type (A)) maps.

Theorem 6.2.3 Let (X,F,∆) be a complete Menger space. Let f and g be compatible
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of type (A) ( or compatible of type (P) or weak compatible of type (A)) self maps of X

satisfying the following conditions:

(6.2.5) f(X) ⊆ g(X),

(6.2.6) one of the mappings f or g is continuous,

(6.2.7)
∫ 1−F (fx,fy,ct)

0
φ(p)dp ≤

∫ 1−F (gx,gy,ct)

0
φ(p)dp, for each x, y ∈ X, t > 0, c ∈ [0, 1),

where φ : R+ → R+ is a Lebesgue-integral mapping which is summable (with finite

integral) on each compact subset of R+, non-negative, and such that for each ε > 0,

(6.2.8)
∫ ε
0
φ(p)dp > 0.

Then f and g have a unique common fixed point.

Proof Let x0 ∈ X, since f(X) ⊆ g(X), choose x1 ∈ X such that g(x1) = f(x0). In

general, choose xn+1 such that yn = g(xn+1) = f(xn).

For each integer n ≥ 1, we have from (6.2.7),

∫ 1−F (yn,yn+1,t)

0
φ(p)dp =

∫ 1−F (f(xn),f(xn+1),t)

0
φ(p)dp

≤
∫ 1−F (g(xn),g(xn+1),

t
c
)

0
φ(p)dp

=
∫ 1−F (f(xn−1),f(xn),

t
c
)

0
φ(p)dp

≤
∫ 1−F (g(xn−1),g(xn),

t
c2

)

0 φ(p)dp.

In this fashion one can obtain

∫ 1−F (yn,yn+1,t)

0

φ(p)dp =

∫ 1−F (fy0,y1,
t
cn

)

0

φ(p)dp.

Letting n→∞ and using Lebesgue Dominated Convergence Theorem and for c ∈ [0, 1),

it follows in view of (6.2.8) that limn→∞ F (yn, yn+1, t) = 1. Now we shall show that {yn}

is a Cauchy sequence in X.

For each integer n ≥ 1, from (6.2.7), we have
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∫ 1−F (yn,yn+1,t)

0

φ(t)dt =

∫ 1−F (f(xn),f(xn+1),t)

0

φ(t)dt

≤
∫ 1−F (g(xn),g(xn+1),

t
c
)

0

φ(t)dt

=

∫ 1−F (f(xn−1),f(xn),
t
c
)

0

φ(t)dt

≤
∫ 1−F (g(xn−1),g(xn),

t
c2

)

0

φ(t)dt.

Proceeding this way, we obtain after n-th iteration∫ 1−F (yn,yn+1,t)

0
φ(t)dt ≤

∫ 1−F (y0,y1,
t
cn

)

0
φ(t)dt.

Letting limn→∞ and using Lebesgue Dominated Convergence Theorem and c ∈ [0, 1), it

follows that limn→∞ F (yn, yn+1, t) = 1.

Similarly, we have limn→∞ F (yn+1, yn+2, t) = 1.

Now for any positive integer p, we will have

F (yn, yn+p, t) ≥ F (yn, yn+1,
t
p
) ∗ . . . p− times . . . ∗ F (yn+p−1, yn+p,

t
p
)

≥ F (yn, yn+1,
t
p
) ∗ . . . p− times . . . ∗ F (yn, yn+1,

t
p
)

for any positive integer p.

Since limn→∞ F (yn, yn+1, t) = 1, for t > 0, it follows that

limn→∞ F (yn, yn+p, t) ≥ 1 ∗ . . . ∗ 1 ≥ 1.

Thus {yn} is a Cauchy sequence in X.

But f and g are compatible mappings of type (A) ( or compatible of type (P)or weak

compatible of type (A) ) ,and g is continuous ,therefore, by Remark 6.1.8., we have

limn→∞ fg(xn) = gz.

Now from (6.2.7),we have

∫ 1−F (fg(xn),f(xn),t)

0

φ(t)dt ≤
∫ 1−F (gg(xn),g(xn),

t
c
)

0

φ(t)dt,

On letting limn→∞ and using Lebesgue Dominated Convergence Theorem it follows that
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gz = z. Again from (6.2.7)

∫ 1−F (f(xn),fz,t)

0
φ(t)dt ≤

∫ 1−F (g(xn),gz,
t
c
)

0
φ(t)dt,

Taking limn→∞ and using Lebesgue dominated convergence theorem it follows in view

of (6.2.8) that fz = z. Hence z is a common fixed point of f and g.

For Uniqueness:

Suppose that w(6= z) is another fixed point of f and g. From (iii), we have

∫ 1−F (z,w,t)

0

φ(t)dt =

∫ 1−F (fz,fw,t)

0

φ(t)dt

≤
∫ 1−F (g(xn),gw,

t
c
)

0

φ(t)dt

=

∫ 1−F (z,w, t
c
)

0

φ(t)dt

since c ∈ [0, 1), therefore z = w and so uniqueness follows.

Example 6.2.4 Let X = [0, 1] be equipped with the usual metric space.

Define F (x, y, t) = t
t+d(x,y)

for all x, y ∈ X and for each t > 0. Define mappings

f, g : X → by f(x) = x
3

and g(x) = x
2

for all x ∈ X.

Clearly f(X) = [0, 1
3
] ⊂ gX = [0, 1

2
].

Moreover, φ is defined by φ(t) = t for t > 0 is a Lebesgue integral mapping which is

summable (with finite integral) on each compact subset of R+, non-negative, and such

that for each ε > 0,
∫ ε
0
φ(t)dt > 0.

Now∫ 1−F (fx,fy,ct)

0
φ(p)dp =

∫ 1−F (gx,gy,t)

0
φ(p)dp,

where 1− F (fx, fy, ct) = { d(x,y)
(3ct+d(x,y))

}

and 1− F (gx, gy, t) = { d(x,y)
(2t+d(x,y))

}.
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Thus all the conditions of Theorem (6.2.3) are satisfied with φ(t) = t for t > 0, φ(0) = 0

and c ∈ [2
3
, 1) also 0 is the unique common fixed point of f and g .

Next, we shall prove a theorem for a weakly compatible maps satisfying a contractive

condition of integral type as follows:

Theorem 6.2.5 Let (X,F,4) a Menger space. Suppose f and g are weakly compatible

self maps of X satisfying (6.2.5), (6.2.7), (6.2.8) and the following condition:

(6.2.9) any one of f(X) or g(X) is complete

Then f and g have a unique common fixed point.

Proof From proof of Theorem (6.2.3), we conclude that {yn} is a Cauchy sequence in

X and from (6.2.9) either f(X) or g(X) is complete, for definiteness assume that g(X)

is complete. Note that the sequence {y2n} is contained in g(X) so has a limit in g(X).

Call it z. Let u ∈ g−1z. Then gu = z. Now we show that fu = z. From (6.2.7), we

have

∫ 1−F (f(xn),fu,t)

0

φ(p)dp =

∫ 1−F (g(xn),gu,
t
c
)

0

φ(p)dp,

for each x, y ∈ X, c ∈ [0, 1). Letting limn→∞ and using Lebesgue Dominated Conver-

gence Theorem, it follows in view of (6.2.8) that fu = z.

Since f and g are weakly compatible, it follows that fz = fgu = gfu = gz.

Now we show that z is a common fixed point of f and g.

From (6.2.7) , we obtain

∫ 1−F (fz,z,t)

0

φ(p)dp =

∫ 1−F (fz,fu,t)

0

φ(p)dp

≤
∫ 1−F (gz,gu, t

c
)

0

φ(p)dp

=

∫ 1−F (fz,z, t
c
)

0

φ(p)dp
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which is a contradiction, since c ∈ [0, 1), this implies fz = z = gz and therefore , z is a

common fixed point of f and g.

For Uniqueness:

Suppose that w( 6= z) is also another common fixed points of f and g. Then from (6.2.7)

, we have ∫ 1−F (z,w,t)

0

φ(p)dp =

∫ 1−F (fz,fw,t)

0

φ(p)dp

≤
∫ 1−F (gz,gw, t

c
)

0

φ(p)dp

=

∫ 1−F (z,w, t
c
)

0

φ(p)dp

which implies that z = w, and hence uniqueness follows.

Example 6.2.6 Let X = [3, 22] and d be usual metric on X. let f, g : X → X be

defined by

f(x) =


3 : if x = 3

8 : if 3 < x ≤ 7

3 : if x > 7

and g(x) =


3 : if x = 3

10 : if 3 < x ≤ 7

x+2
3

: if x > 7

Define ψ, ϕ : [0,∞)→ [0,∞) where ψ(t) = (t+ 1)t+1 − 1 and ϕ(t) = ψ
′
(t).

Also define

F (x, y, t) = t
t+d(x,y)

for all x, y ∈ X and for each t > 0.

Moreover, fX = {3} ∪ {8}, gX = [3, 8] ∪ {10}. Hence fX ⊆ gX .

To see that f and g are non-compatible maps, consider the sequence

{xn = 7 + 1
n
, n ≥ 1} in X.

Then limn→∞ f(xn) = 3, limn→∞ g(xn) = 3, limn→∞ fg(xn) = 8 and limn→∞ gf(xn) = 3.

Hence f and g are non-compatible maps.But they are weakly compatible maps since

they commute at coincidence point at x = 3. Thus f and g satisfy all the conditions of

the theorem 6.2.5 and have a unique common fixed point at x = 3.
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6.3 Universal weakly compatible maps

Now we shall define universal weakly compatible maps in probabilistic metric spaces

which follows:

Theorem 6.3.1 A pair of self-mappings (f, g) of a Menger space (X,F,∆) is said to

be Universal weakly compatible maps if there exists a sequence {xn} ∈ X such that

F (f(xn), g(xn), t) = 1 for some t ∈ X.

Example 6.3.2 Let X = [0,+∞). Define S, T : X → X by

T (x) = x
2

and S(x) = 3x
4

, for all x ∈ X.

Consider the sequence {xn} = 1
n

.

Clearly limn→∞ S(xn) = limn→∞ T (xn) = 0.

Then S and T are Universal weakly compatible maps.

Example 6.3.3 Let X = [2
3
,+∞). Define f, g : X → X by

g(x) = x+1
3

and f(x) = 2x+1
3

, for all x ∈ X.

Suppose that f and g are Universal weakly compatible maps.

Then, there exists a sequence {xn} in X satisfying

limn→∞ f(xn) = limn→∞ g(xn) = z for some z ∈ X. Therefore,

limn→∞ xn = 3z − 1 and limn→∞ xn = 3z−1
2

.Thus, z = 1
3

,

which is a contradiction, since 1
3

is not contained in X.

Hence f and g are not Universal weakly compatible maps.

Example 6.3.4 Let X = [0, 1] be equipped with the usual metric d(x, y) = |x− y| .

Define F (x, y, t) = t
t+d(x,y)

for all x, y ∈ X and for each t > 0.

Hence (X,M,∆) is a menger space. Also define

f(x) =

 1− x : if 0 ≤ x ≤ 1
2

3
4

: if 1
2
< x ≤ 1

and g(x) =


1
2

: if 0 ≤ x ≤ 1
2

0 : if 1
2
< x ≤ 1
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Consider the sequence {xn} = {1
2
− 1

n
},

we have limn→∞ f(1
2
− 1

n
) = 1

2
= limn→∞ g(1

2
).

Thus, the pair (f, g) are Universal weakly compatible maps.

Further, f and g are weakly compatible since x = 1
2

is their unique coincidence point

and

fg(1
2
) = f(1

2
) = g(1

2
) = gf(1

2
).

We further observe that d(fg(1
2
− 1

n
), gf(1

2
− 1

n
)) 6= 0 ,

showing that limn→∞ F (fgxn, gfxn, t) 6= 1 ,therefore, the pair (f, g) is non compatible.

Example 6.3.5 Let X = R+ be equipped with the usual metric d(x, y) = |x− y| .

Define F (x, y, t) = t
t+d(x,y)

for all x, y ∈ X and for each t > 0.

Hence (X,M,∆) is a menger space. Also define f, g : X → X by

fx = 0, if 0 < x ≤ 1 and fx = 1, if x > 1 or x = 0; and gx = [x], the greatest integer

that is less than or equal to x, for all x ∈ X. Consider a sequence

{xn} = {1 + 1
n
}, n ≥ 2 in (1, 2), then we have limn→∞ fxn = 1 = limn→∞ gxn. Similarly

for the sequence {yn} = {1− 1
n
}n ≥ 2 in (0, 1), we have limn→∞ fyn = 0 = limn→∞ gyn.

Thus the pair (f, g) are Universal weakly compatible maps. However, f and g are not

weakly compatible as as each u1 ∈ (0, 1) and u2 ∈ (1, 2) are coincidence points of f and

g, where they do not commute. Moreover, they commute at x = 0, 1, 2... but none of

these points are coincidence points of f and g. Further, we note that pair (f, g) is non

compatible maps.

Now we are ready to prove a theorem for a pair of weakly compatible maps along with

the notion of Universal weakly compatible maps.

Theorem 6.3.6 Let (X,F,∆) be a Menger space. Suppose f and g are weak compatible

self-maps of X satisfying (6.2.5), (6.2.7), (6.2.8) and the following:

(6.2.10) f, g are Universal weakly compatible maps

(6.2.11) f(X) or g(X) is a closed subset X.
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Then f and g have a coincidence point. Moreover f and g have a unique common fixed

point.

Proof. Since f and g be Universal weakly compatible maps,therefore, there exists a

sequence {xn} in X such that limn→∞ fxn = limn→∞ gxn = u ∈ X. Since either f(X) or

g(X) is a closed subspace of X, for definiteness we assume that g(X) is a closed subset of

X. Further, note that the sequence {y2n} which is contained in g(X), so there is a limit

in g(X). Call it be u such that u = ga. Therefore, limn→∞ fxn = u = ga = limn→∞ gxn

for some a ∈ X. This implies u = ga ∈ gX. Now we show that u = fa = ga. From

(6.2.7) ,we have ∫ 1−F (a,xn,ct)

0

φ(p)dp =

∫ 1−F (ga,gxn,t)

0

φ(p)dp

Letting limn→∞ and using Lebesgue dominated convergence theorem and c ∈ [0, 1) it

follows in view of (6.2.8) that F (fa, fa, ct) ≤ F (ga, fa, t),this implies that u = ga = fa.

Thus a is the coincidence point of f and g. Since f and g are weakly compatible, there-

fore, fu = fga = gfa = gu.

Now we show that fu = u. Now from (6.2.7),we have∫ 1−F (fu,fa,ct)

0
φ(p)dp =

∫ 1−F (gu,ga,t)

0
φ(p)dp which in turns implies that fu = u. Hence u

is the unique common fixed point of f and g.

For Uniqueness:

Suppose that w(6= z) is also another fixed point of f and g. From (6.2.7), we have∫ 1−F (z,w,t)

0
φ(t)dt =

∫ 1−F (fz,fw,t)

0
φ(t)dt

<
∫ 1−F (gz,gw, t

c
)

0
φ(t)dt =

∫ 1−F (z,w, t
c
)

0
φ(t)dt since c ∈ [0, 1), therefore z = w and so unique-

ness follows.

Now we give an illustrate example to discuss the validly of out main theorem 6.3.6.

Example 6.3.7 Let X = [0, 1] be equipped with the usual metric space. Define

F (x, y, t) = t
t+d(x,y)

for all x, y ∈ X and for each t > 0. Hence (X,M,∆) is a menger

space. Also define f, g : X → X by f(x) = x
3
, and g(x) = x

2
, for all x ∈ X.Clearly
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f(X) = [0, 1
3
] ⊂ gX = [0, 1

2
].Moreover, φ defined by φ(t) = t for t > 0 is a Lebesgue

-integral mapping which is summable (with finite integral) on each compact subset of

R+, non-negative, and such that for each ε > 0,

∫ ε

0

φ(t)dt > 0

. Now,

∫ 1−F (fx,fy,ct)

0

φ(p)dp =

∫ 1−F (gx,gy,t)

0

φ(p)dp,

where 1− F (fx, fy, ct) = { d(x,y)
(3ct+d(x,y))

} and 1− F (gx, gy, t) = { d(x,y)
(2t+d(x,y))

}.

Thus all the hypothesis of Theorem(6.3.6) are satisfied with φ(t) = t for t > 0 ,φ(0) = 0

and c ∈ [2
3
, 1) and 0 is the unique common fixed point of f and g.

6.4 Variants of R-weakly commuting mappings

In 2007, Kohali and Vashistha ([81]) introduced the notions of R-weakly commuting

mappings of type (i), R-weakly commuting mappings type (ii) and R-weakly commuting

mappings type (iii) in probabilistic metric spaces as follow:

Definition 6.4.1 A pair of self-mappings (f, g) of a Menger space (X,F,∆) is said to

be

(i) R-weakly commuting mappings of type (i) if there exists some R > 0 such that

F (gfx, ffx, t) ≥ F (fx, gx, t
R

),

(ii) R-weakly commuting mappings of type (ii) if there exists some R > 0 such that

F (fgx, ggx, t) ≥ F (fx, gx, t
R

),

(iii) R-weakly commuting mappings of type (iii) if there exists some R > 0 such that

F (ffx, ggx, t) ≥ F (fx, gx, t
R

),for all x ∈ X and t > 0.
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Theorem 6.4.2 Theorem 6.2.5 (or Theorem 6.3.6) remains true if weakly compatible

property is replaced by any one (retining the rest of hypothesis) of the following:

(a) R-weakly commuting property

(b) R-weakly commuting property of type (i)

(c) R-weakly commuting property of type (ii)

(d) R-weakly commuting property of type (iii)

(e) weakly commuting property.

Proof Since all the conditions of Theorem 6.2.5 (or Theorem 6.3.6 ) are satisfied, then

the existence of coincidence points for both the pairs is insured. Let x be an arbitrary

point of coincidence for the pair (f, g), then using R-weak commutativity one gets

F (fgx, gfx, t) ≥ F (fx, gx, t
R

) = 1 which amounts to say that fgx = gfx. Thus the

pair (f, g) is weakly compatible.

Now applying Theorem 6.2.5 (or Theorem 6.3.6), one concludes that f and g have a

unique common fixed point . In case (f, g) is an R-weakly commuting pair of type (ii),

then F (fgx, ggx, t) ≥ F (fx, gx, t
R

) = 1 which amounts to say that fgx = ggx.

Now F (fgx, gfx, t) ≥ ∆(F (fgx, ggx, t
R

),

F (ggx, gfx, t
R

)) = ∆(1, 1) = 1, yielding thereby fgx = gfx. Similarly, if pair is R-

weakly commuting mappings of type (i) or type (iii) or weakly commuting, then pair

(f, g) also commutes at their points of coincidence. Now in view of Theorem 2.3 (or

Theorem 3.1 ) , in all the cases f and g have a unique common fixed point. This

completes the proof.

As an application of Theorem 6.2.5 (or Theorem 6.3.6) we prove a common fixed point

theorem for two finite families of mappings which runs as follows:

Theorem 6.4.3 Let {f1, f2...fm} and {g1, g2, ..., gn} be two finite families of self-mappings

of a Menger space (X,F,∆) such that f = f1f2...fm, g = g1g2...gn, satisfy conditions

(6.2.5), (6.2.7) and (6.2.8) and the following:
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gm(X) is a closed subspace of X. Then f and g have a point of coincidence.

Moreover, if fifj = fjfi and gkgl = glgk for all i, j ∈ I1 = {1, 2, ...,m}, k, l ∈ I2 =

{1, 2, ..., n}, then (for all i ∈ I1, k ∈ I2), fi and gk have a common fixed point.

Proof The conclusion is immediate i.e., f and g have a point of coincidence as f ,

and g satisfy all the conditions of Theorem 6.2.5 (or Theorem 6.3.6). Now appealing

to component wise commutativity of various pairs, one can immediately prove that

fg = gf hence, obviously pairs (f, g) is coincidentally commuting. Note that all the

conditions of Theorem 6.2.5 (or Theorem 6.3.6) are satisfied ensuring the existence of a

unique common fixed point say z. Now one need to show that z remains the fixed point

of all the component maps. For this consider

f(fiz) = ((f1f2...fm)fi)z = (f1f2...fm−1)((fmfi)z) = (f1...fm−1)(fifmz)

= (f1...fm−2)(fm−1fi(fmz)) = (f1...fm−2)(fifm−1(fmz))

= . . . = f1fi(f2f3f4...fmz) = fif1(f2f3...fmz)

= fi(fz) = fiz. Similarly, one can show that

f(gkz) = gk(fz) = gkz, f(gkz) = gk(gz) = gkz and g(fiz) = fi(gz) = fiz, which show

that (for all I and k ) fiz and gkz are other fixed points of the pair (f, g)w. Now

appealing to the uniqueness of common fixed points of both pairs separately, we get

z = fiz = gkz,which shows that z is a common fixed point of fi, gk for all i and k.

Corollary 6.4.4 Let f and g be two self-mappings of a Menger space (X,F,∆) such

that fm and gn satisfy the conditions (6.2.5), (6.2.7) and (6.2.8) .

If one of fm(X) or gn(X) is a complete subspace of X, then f and g have a unique

common fixed point provided (f, g) commute.
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Chapter 7
GENERALIZED (ϕ, ψ)-WEAK CONTRACTIONS

7.1

In this chapter, we shall deal with such type of contractions involving some control

functions. In fact, all contractions are the generalizations of Banach by including the

distance function within the real valued function. We have proved some fixed point

theorems in G-metric space by using (φ, ψ) - contraction condition.

Generalized Metric Spaces:

Now we recall the main definitions for the concept of G-metric space introduce initially

by Mustafa and Sims([176]):

Definition 7.1.1 Let X be a nonempty set. Suppose that a mapping G : X×X×X →

R+ satisfies:

(i) G(x, y, z) = 0 if and only if x = y = z,

(ii) 0 < G(x, y, z) for all x, y ∈ X, with x 6= y,

(iii) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,

(iv) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables), and

(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.
∗Accepted in

“Fixed point theory for generalized (φ, ψ) - weak contractions involving f − g reciprocally continu-
ity”Indian Journal Of Mathematics Special Volume Dedicated To Professor Billy E. Rhoades Vol. 56,
No. 1, 2014.
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Then G is called a G-metric on X and (X,G) is called a G-metric space.

Definition 7.1.2 A G-metric is said to be symmetric if G(x, y, y) = G(y, x, x) for all

x, y ∈ X.

Definition 7.1.3 Let (X,G) be a G-metric space. We say that {xn} is:

(vi) a G-Cauchy sequence if, for any ε > 0, there is an n0 ∈ N (the set of all positive

integers) such that for all n,m, l ≥ n0, G(xn, xm, xl) < ε;

(vii) a G-convergent sequence if, for any ε > 0, there is an x ∈ X and an n0 ∈ N, such

that for all n,m ≥ n0, G(x, xn, xm) < ε.

A G-metric spaceX is said to be complete if everyG-Cauchy sequence inX is convergent

in X. It is known that {xn} converges to x ∈ (X,G) if and only if G(xm, xn, x)→ 0 as

n,m→∞.

Definition 7.1.4 Let f and g be self maps of a set X. If w = fx = gx for some x in

X, then x is called a coincidence point of f and g, and w is called a point of coincidence

of f and g.

We have introduced the notion of f -g reciprocal continuity in G-metric spaces which

follows:

Definition 7.1.5 Two self mappings f and g of a G - metric space (X,G) are said to be

f -g reciprocally continuous if and only if limn→∞ ff(xn) = fu and limn→∞ gg(xn) = gu,

whenever {xn} is a sequence in X such that limn→∞ f(xn) = limn→∞ g(xn) = u for some

u ∈ X.

In 1996 Pathak, Cho, Chang and Lee ([70]) defined a mapping called compatible map-

ping of type (P) in metric spaces. We redefine the same in the setting of G-metric spaces

in the following way:
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Definition 7.1.6 Let f, g : (X,G) → (X,G) be mappings. f and g are said to be

compatible maps of type(P) if

lim
n→∞

G(ff(xn), gg(xn), gg(xn)) = 0

whenever {xn} is a sequence in X such that f(xn), g(xn) → z, for some z ∈ X, as

n→∞.

Observation 7.1.7 Let f and g be f -g reciprocal continuous mapping of a G - metric

spaces (X,G). Then f and g have coincidence point if and only if they are compatible

mapping of type(P).

Proof

“If part”Suppose that f and g have coincidence point. Since f and g are f -g reciprocal

continuous mappings then there exists a sequence {xn} in X such that limn→∞ f(xn) =

limn→∞ g(xn) = z and limn→∞ ff(xn) = fz, limn→∞ gg(xn) = gz for some z ∈ X.

Now by triangle inequality of the G-metric space we have

G(ff(xn), gg(xn), gg(xn)) ≤ G(ff(xn), fz, fz) +G(fz, gz, gz) +G(gz, gg(xn), gg(xn))

. Taking n→∞, then we have

limn→∞G(ff(xn), gg(xn), gg(xn)) ≤ limn→∞G(ff(xn), fz, fz) + limn→∞G(fz, gz, gz)

+ limn→∞G(gz, gg(xn), gg(xn))

which implies that G(ff(xn), gg(xn), gg(xn)) → 0 as n → ∞. Therefore, f and g are

compatible maps of type(P).

“Only if part”Now assume that f and g are compatible maps of type(P). Since f and

g are f -g reciprocal continuous mappings then there exists a sequence {xn} in X such
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that limn→∞ f(xn) = limn→∞ g(xn) = z for some z ∈ X. But then triangle inequality

implies

G(fz, gz, gz) ≤ G(fz, ff(xn), ff(xn)) +G(ff(xn), gg(xn), gg(xn)) +G(gg(xn), gz, gz)

Taking n→∞ since f and g are f -g reciprocal continuous maps, so we have

limn→∞G(fz, gz, gz) ≤ limn→∞G(fz, ff(xn), ff(xn))+limn→∞G(ff(xn), gg(xn), gg(xn))

+ limn→∞G(gg(xn), gz, gz)

which implies that G(fz, gz, gz) → 0 as n → ∞. Therefore, f and g have coincidence

point. This completed the proof.

Now we introduce the concept of compatible mapping in the setting of G - metric spaces

which was earlier introduced by Jungck([53]:

Definition 7.1.8 Let f and g be self-maps of a G-metric space (X,G). The maps f

and g are said to be compatible if limn→∞G(fg(xn), gf(xn), gf(xn), t) = 0, whenever

{xn} is a sequence in X such that limn→∞ f(xn) = limn→∞ g(xn) = u for some u ∈ X

and for all t > 0.

Very recently, Bouhadjera and Thobie ([63]) introduced the concept of sub-compatible

maps as a generalization of compatible maps in metric spaces. Now, we introduce the

notion of sub-compatible mapping in the setting of G-metric spaces.

Definition 7.1.9 Let f and g be self-maps of a G - metric space (X,G). The maps

f and g are said to be sub-compatible if and only if there exists a sequence {xn} in X

such that limn→∞ f(xn) = limn→∞ g(xn) = u for some u ∈ X and which satisfy

lim
n→∞

G(fg(xn), gf(xn), gf(xn)) = 0,
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7.1.1 Main Results

Now we are in a position to prove our main theorem in G-metric space:

Definition 7.1.1.1 Let (X,G) be a G-metric space and f, g : X → X be given maps.

The map g is called a generalized (ϕ, ψ)-weak contraction with respect to f if there

exists a function ψ : [0,∞) → [0,∞) with ψ(r) > 0 for r > 0 and ψ(0) = 0 and an

altering distance function ϕ such that

ϕ(G(gx, gy, gy)) ≤ ϕ(m(f, g))− ψ(m(f, g)) (7.1.1)

holds for every x, y ∈ X and each t > 0 with

m(f, g) = max{G(fx, fy, fy), G(gx, fx, fx), G(gy, fy, fy)}.

If f = IX , where IX is the identity map, then g is called a generalized (ϕ, ψ)-weak

contraction.

Theorem 7.1.1.2 Let f, g : X → X be f -g reciprocally continuous self-maps of a

complete G - metric space (X,G) such that

1. g(X) ⊆ f(X),

2. g is a generalized (ϕ, ψ)-weak contraction with respect to f .

If f and g are sub-compatible maps and ψ is a continuous function, then f and g have

a unique common fixed point in X, that is, there exists u ∈ X such that u = fu = gu.

Proof Let x0 be an arbitrary point in X. Since g(X) ⊆ f(X), we can define, for each

n ≥ 0, a sequence of points x0, x1, x2, . . . , xn such that xn+1 is in the pre-image under
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f of {gxn}, i. e., g(x0) = f(x1), g(x1) = f(x2), . . . , g(xn) = f(xn+1), . . .. Moreover, we

can define a sequence yn in X by

yn = g(xn) = f(xn+1). (7.1.2)

Suppose that yn = yn+1 for some n. Then by condition (7.1.1) we have easily yn+1 = yn+2

and so ym = yn for every m > n. Thus the sequence {yn} is Cauchy. Assume that

yn+1 6= yn, for all n. Then, for x = xn+1 and y = xn, we have

m(f, g) = max{G(f(xn+1), f(xn), f(xn)), G(g(xn+1), f(xn+1), f(xn+1)), G(g(xn), f(xn), f(xn))}

= max{G(yn, yn−1, yn−1), G(yn+1, yn, yn), G(yn, yn−1, yn−1)}.

So, if m(f, g) = G(yn+1, yn, yn), we obtain

ϕ(G(g(xn+1), g(xn), g(xn)) = ϕ(G(yn+1, yn, yn))

≤ ϕ(G(yn+1, yn, yn))− ψ(G(yn+1, yn, yn))

which implies that G(yn+1, yn, yn) = 0, a contradiction as yn+1 6= yn for all n.

Then, we must have m(f, g) = G(yn, yn−1, yn−1) and hence

ϕ(G(yn+1, yn, yn)) ≤ ϕ(G(yn−1, yn, yn))− ψ(G(yn−1, yn, yn))

< ϕ(G(yn, yn−1, yn−1)).

Consequently, considering that the ϕ function is non-decreasing, we have that

G(yn, yn+1, yn+1) > G(yn−1, yn, yn), for all n, (7.1.3)

and hence {G(yn−1, yn, yn)} is an non - decreasing sequence of positive real numbers in

(0, 1]. Let S(t) = limn→∞G(yn−1, yn, yn). Then we show that S(t) = 0. If not, there

exists S(t) < 1 and S(t) > 1. Then from the above inequality, on taking n→∞, we
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obtain

ϕS(t) ≤ ϕS(t)− ψS(t)

a contradiction. Therefore G(yn, yn+1, yn+1)→ 0 as n→∞.

Now, for each positive integer p, we write

G(yn, yn+p, yn+p) ≤ G(yn, yn+1, yn+1) +G(yn+1, yn+2, yn+2) + · · ·+G(yn+p−1, yn+p, yn+p).

It follows that

lim
n→∞

G(yn, yn+p, yn+p) ≤ 0 + 0 + · · ·+ 0 = 0,

and hence {yn} is a G-cauchy sequence.

Since (X,G) is complete G - metric space, then there exists u ∈ X such that yn → u as

n→∞.

Clearly,

lim
n→∞

yn = lim
n→∞

g(xn) = lim
n→∞

f(xn+1) = u.

Now, f -g reciprocal continuity of f and g implies that ff(xn)→ fu and gg(xn)→ gu.

We have ff(xn)→ fu, then by construction of the sequence (7.1.2) we have fg(xn) =

ff(xn+1)→ fu. On the other hand, sub-compatibility of f and g yields

limn→∞G(fg(xn), gf(xn), gf(xn)) = 0, which implies that gf(xn) → fu. Now, taking

x = u and y = f(xn), we get

m(f, g) = max{G(fu, ff(xn), ff(xn)), G(gu, fu, fu), G(gf(xn), ff(xn), ff(xn))}

→ G(gu, fu, fu), as n→∞.

Now, by

ϕ(G(gu, gf(xn), gf(xn))) ≤ ϕ(G(gu, gf(xn), gf(xn))−ψ(G(gu, gf(xn), gf(xn))),

on taking n→∞, we get G(gu, fu, fu) = 0, which implies that gu = fu. It means that

u is a coincidence point of f and g.

Now, we shall show that u is also a common fixed point of f and g. For this we assert
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that gu = u, and so gu = u = fu. On the other hand, if gu 6= u, then taking x = u and

y = xn, we have

m(f, g) = max{G(fu, f(xn), f(xn)), G(gu, fu, fu), G(g(xn), f(xn), f(xn))}.

It follows that m(f, g)→ G(gu, u, u), as n→∞.

Now, by

ϕ(G(gu, g(xn), g(xn)) ≤ ϕ(m(f, g))− ψ(m(f, g)),

on taking n→∞, we get

ϕ(G(gu, u, u)) ≤ ϕ(G(gu, u, u))− ψ(G(gu, u, u)),

which implies gu = u. Therefore fu = u = gu and hence u is a common fixed point of

f and g.

Finally, to prove uniqueness of the fixed point, we suppose that z is another common

fixed point of f and g. Then, taking x = u and y = z, we have

m(f, g) = max{G(fu, fz, fz), G(gu, fu, fu), G(gz, fz, fz)}

= max{G(u, z, z), G(u, u, u), G(z, z, z)}

= G(u, z, z).

Consequently

ϕ(G(gu, gz, gz)) = ϕ(G(u, z, z))

≤ ϕ(G(u, z, z))− ψ(G(u, z, z)),

which implies G(u, z, z) = 0, that holds if and only if u = z. Therefore u is a unique

common fixed point of f and g.

Example 7.1.1.3 Let X = [0, 1] and (X,G) be the complete G-metric space defined

by G(x, y, z) =| x− y | + | y − z | + | z − x | , for all x, y, z ∈ X.

Define ϕ, ψ : [0,∞)→ [0,∞) by ϕ(t) = t, and ψ(t) = t
2
, for all t > 0.
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Define also f, g : X → X by

f(x) =
x

2
for all x ∈ [0, 1] and g(x) =


x
16

if x ∈ [0, 1
2
]

0 if x ∈ (1
2
, 1]

.

Let {xn} be a sequence in X such that {xn} = { 1
2n
}, n ∈ N. Then we have

limn→∞ f(xn) = limn→∞ g(xn) = limn→∞fg(xn) = limn→∞ gf(xn) = limn→∞ ff(xn) =

limn→∞ gg(xn) = 0, so limn→∞G(fg(xn), gf(xn), gf(xn)) = 0.

Hence pair of maps {f, g} is sub - compatible and f -g reciprocal continuous. Also we

can easily show that the maps f and g satisfies the contractive condition (7.1.1). Thus

this example satisfies all the conditions of the above theorem, and x = 0 is unique

common fixed point for the mappings f and g.

Remark 7.1.1.4 Theorem 7.1.1.1 extends and complements the related results of ([65])

and references therein.

7.1.2 Cyclic (ϕ, ψ)-Weak Contraction

Since contraction mapping is always continuous so it suggests in a natural way that

the question of obtaining fixed points in metric spaces where the self-mapping in a

metric spaces not necessarily continuous. The answer of this question given by Kirk,

Srinivasan and Veeramani ([168]) and turned the direction of obtaining fixed point by

introducing cyclic representations and cyclic contractions. In 2010, Pacurar and Rus

([115]) introduced the concept of cyclic φ-contraction and proved a fixed point theorem

for cyclic φ−contraction in complete metric spaces. Later Gopal, Imdad, Vetro and

Hasan([40]) introduced the notion of cyclic weak φ−contraction in fuzzy metric spaces.

Definition 7.1.2.1 ([115]) Let X be a nonempty set, m a positive integer and g : X →
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X an operator. By definition, X =
m⋃
i=1

Xi is a cyclic representation of X with respect

to g if

(i) Xi, i = 1, 2, . . . ,m are nonempty sets,

(ii) g(X1) ⊂ X2, . . . , g(Xm−1) ⊂ Xm, g(Xm) ⊂ X1.

Example 7.1.2.2 ([40]) Let X = R. Assume A1 = A3 = [−2, 0] and A2 = A4 = [0, 2],

so that Y =
4⋃
i=1

Ai = [−2, 2]. Define g : Y → Y such that g(x) = −x
2
, for all x ∈ Y. It is

clear that Y =
4⋃
i=1

Ai is a cyclic representation of Y.

By drawing the idea of Gopal, Imdad, Vetro and Hasan([40]), we introduce the notion

of cyclic weak (ϕ, ψ)-contraction in the setting of G - metric spaces.

Definition 7.1.2.3 Let (X,G) be a G - metric space, A1, A2, . . . , Am be closed subsets

of X and Y =
m⋃
i=1

Ai. An operator g : Y → Y is called a cyclic weak (ϕ, ψ)-contraction

if the following conditions hold:

(i) Y =
m⋃
i=1

Ai is a cyclic representation of Y with respect to g;

(ii) there exists a function ψ : [0,∞)→ [0,∞) with ψ(r) > 0 for r > 0 and ψ(0) = 0

and an altering distance function ϕ such that

ϕ(G(gx, gy, gy)) ≤ ϕ(G(x, y, y))− ψ(G(x, y, y)), (7.1.4)

for any x ∈ Ai, y ∈ Ai+1 (i = 1, 2, · · · ,m, where Am+1 = A1) and each t > 0.

Now, we are ready to prove the following theorem.

Theorem 7.1.2.4 Let (X,G) be a G - metric space, A1, A2, . . . , Am be closed subsets

of X and Y =
m⋃
i=1

Ai be G-complete. Suppose that there exists a function ψ : [0,∞)→
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[0,∞) with ψ(r) > 0 for r > 0 and ψ(0) = 0 and an altering distance function ϕ. If

g : Y → Y is a continuous cyclic weak (ϕ, ψ)-contraction, then g has a unique fixed

point u ∈
m⋂
i=1

Ai.

Proof.Let x0 ∈ Y =
m⋃
i=1

Ai and set xn = g(xn−1) (n ≥ 1). Clearly, we getG(xn, xn+1, xn+1) =

G(g(xn−1), g(xn), g(xn)) Besides for any n ≥ 0, there exists in ∈ {1, 2, . . . ,m} such that

xn ∈ Ain and xn+1 ∈ Ain+1. Then by (7.1.4), we have

ϕ(G(xn, xn+1, xn+1)) = ϕ(G(g(xn−1), g(xn), g(xn)))

≤ ϕ(G(xn−1, xn, xn))− ψ(G(xn−1, xn, xn))

≤ ϕ(G(xn−1, xn, xn)

which implies thatG(xn, xn+1, xn+1) ≤ G(xn−1, xn, xn) for all n ≥ 1 and so {G(xn−1, xn, xn)}

is a non-decreasing sequence of positive real numbers in (0, 1].

Let S(t) = lim
n→+∞

G(xn−1, xn, xn). Now, we show that S(t) = 0. If not, there exists

S(t) < 1 and S(t) > 1. Then, on making n→ +∞ in (7.1.5), we obtain

ϕ(S(t)) ≤ ϕ(S(t))− ψ(S(t))

which is a contradiction. Therefore G(xn, xn+1, xn+1)→ 1 as n→ +∞.

Now, for each positive integer p, we have

G(xn, xn+p, xn+p) ≤ G(xn, xn+1, xn+1)+G(xn+1, xn+2, xn+2)+· · ·+G(xn+p−1, xn+p, xn+p).

It follows that

lim
n→+∞

G(xn, xn+p, xn+p) ≤ 0 + 0 + · · · 0 = 0,

and hence {xn} is a G-Cauchy sequence.
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As Y is G-complete, then there exists z ∈ Y such that lim
n→+∞

xn = z. On the other hand,

by the condition (i) of definition (7.1.2.3), it follows that the iterative sequence {xn} has

an infinite number of terms in Ai for each i = 1, 2, . . . ,m. Since Y is G-complete, from

each Ai, i = 1, 2, . . . ,m, one can extract a subsequence of {xn} that converges to z. In

virtue of the fact that each Ai, i = 1, 2, . . . ,m is closed, we conclude that z ∈
m⋂
i=1

Ai

and thus
m⋂
i=1

Ai 6= ∅. Obviously,
m⋂
i=1

Ai is closed and G-complete. Now, consider the

restriction of g on
m⋂
i=1

Ai, i.e., g|
m⋂
i=1

Ai :
m⋂
i=1

Ai →
m⋂
i=1

Ai which satisfies the assumptions

of Theorem(7.1.1.1) and thus, g|
m⋂
i=1

Ai has a unique fixed point in
m⋂
i=1

Ai, say q, which

is obtained by iteration from the starting point x0 ∈ Y . To this aim, we have to show

that xn → u as n→∞. Then, by (7.1.4), we have

ϕ(G(xn, u, u)) ≤ ϕ(G(xn−1, u, u))− ψ(G(xn−1, u, u)).

Now, letting n→ +∞, we get

ϕ(G(z, u, u)) ≤ ϕ(G(z, u, u))− ψ(G(z, u, u))

which is a contradiction if G(z, u, u) < 0, and so, we conclude that u = z. Obviously, u

is a unique fixed point of g.

Example 7.1.2.5 Let X = R and G(x, y, z) = |x − y| + |y − z| + |z − x|, for all

x, y, z ∈ X. Assume A1 = A2 = · · · = Am = [0, 1], so that Y =
m⋃
i=1

Ai = [0, 1] and define

g : Y → Y by g(x) = x2

4
. Furthermore, if ϕ, ψ : [0,∞)→ [0,∞) are defined by ψ(s) = s

4

and ϕ(s) = s
2

for all s ≥ 0, we have

ϕ(G(gx, gy, gy)) =
|x2 − y2|

8
+
|y2 − x2|

8
=
|x2 − y2|

4

≤ |x− y|
4

= ϕ(G(x, y, y)))− ψ(G(x, y, y)).
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Clearly, g is a cyclic weak (ϕ, ψ)-contraction and all the conditions of Theorem (7.1.2.4)

are satisfied. Therefore g has a unique fixed point 0 ∈
m⋂
i=1

Ai.
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